
ReGraph: A Graph Processing Framework that Alternately
Shrinks and Repartitions the Graph

Xue Li∗†
Tsinghua University

Mingxing Zhang∗†
Tsinghua University, Sangfor Technologies Inc.

Kang Chen†‡
Tsinghua University

Yongwei Wu†‡
Tsinghua University

ABSTRACT

“Think Like a Sub-Graph (TLASG)” is a philosophy proposed for
guiding the design of graph-oriented programming models. As
TLASG-based models allow information to flow freely inside a
partition, they usually require much fewer iterations to converge
when compared with “Think Like a Vertex (TLAV)”-based models.

In this paper, we further explore the idea of TLASG by enabling
users to 1) proactively repartition the graph; and 2) efficiently scale
down the problem’s size. With these methods, our novel TLASG-
based distributed graph processing system ReGraph requires even
fewer iterations (typically ≤ 6) to converge, and hence achieves bet-
ter performance (up to 45.4X) and scalability than existing TLAV and
TLASG-based frameworks. Moreover, we show that these optimiza-
tions can be enabled without a large change in the programming
model. We also implement our novel algorithm on top of Spark
directly and compare it with other Spark-based implementation,
which shows that our speedup is not bounded to our own platform.

CCS CONCEPTS

• Computer systems organization → Distributed architec-

tures; •Computingmethodologies→Distributed algorithms;

KEYWORDS

Graph Processing, Distributed System, Repartition
ACM Reference Format:

Xue Li, Mingxing Zhang, Kang Chen, and Yongwei Wu. 2018. ReGraph: A
Graph Processing Framework that Alternately Shrinks and Repartitions
the Graph. In Proceedings of 2018 International Conference on Supercomput-
ing (ICS ’18). ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3205289.3205292
∗X. Li and M. Zhang equally contributed to this work.
†Department of Computer Science and Technology, Graduate School at Shenzhen,
Tsinghua National Laboratory for Information Science and Technology(TNLIST), Ts-
inghua University, Beijing 100084, China; Research Institute of Tsinghua University in
Shenzhen, Guangdong 518057, China. M. Zhang is also with Sangfor Technologies Inc.
‡Corresponding author: Kang Chen (chenkang@tsinghua.edu.cn) and Yongwei Wu
(wuyw@tsinghua.edu.cn).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICS ’18, June 12–15, 2018, Beijing, China
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5783-8/18/06. . . $15.00
https://doi.org/10.1145/3205289.3205292

1 INTRODUCTION

1.1 From Vertex to Graph

“Think Like a Vertex (TLAV)” [23] is the cornerstone of early large-
scale graph processing systems [1, 14, 20, 22], and it’s inherited
by many works [6, 15, 25, 39, 40]. This philosophy leads to vertex-
centric programming models that require users to implement pro-
grams from the perspective of a vertex rather than the whole graph.
Typically, the execution of a user-defined vertex function involves:
1) receiving messages from other vertices via incoming edges; 2) up-
dating the state of itself; and 3) sending messages to other vertices
via outgoing edges. In each iteration, this program kernel is exe-
cuted on every vertex once if it is active, and a certain terminating
condition is defined to stop the execution.

In contrary to the randomly accessible, “global” perspective of
data employed by conventional shared-memory sequential graph al-
gorithms, vertex-centric frameworks employ a local, vertex-oriented
perspective of computation, encouraging practitioners to “think like
a vertex”. As a result, two different vertices/edges can be assigned
to different workers (i.e., automatic scale-out) and can even be pro-
cessed simultaneously if the intersection of their neighborhoods
is empty (i.e., automatic parallelization). However, although TLAV
leads to convenient programming models and has been proved to be
useful for many algorithms, it does not always perform efficiently,
because it is very short-sighted. Only the data of immediate neigh-
bors can be read/updated in an execution so that the information
is propagated just one hop at a time. Especially for large-diameter
graphs, a TLAV-based framework may face the problem of slow con-
vergence. Even with some optimizations such as the asynchronous
execution or an advanced scheduler [24], a TLAV-based program
is still short-sighted, which prohibits programmers to implement
more efficient algorithms (such as disjoint-set based WCC).

To overcome this limitation, some works [29, 31, 38] propose an
alternative philosophy named “Think Like a Sub-Graph (TLASG)”.
The main idea of TLASG is making the use of the fact that, for
every node in the distributed graph processing cluster, a partition
of the whole graph rather than only the neighborhood of a specific
vertex/edge is available at a time. Thus, it is possible to reduce the
number of iterations needed to propagate a piece of information
from a source to a destination. For example, only one step is needed
if these two vertices appear in the same graph partition.

As a summary, TLASG-based frameworks pass an entire sub-
graph, rather than only a(n) vertex/edge, to the user-defined func-
tion, so that the program kernel can immediately exchange the data
of two vertices/edges if they belong to the same sub-graph. This

https://doi.org/10.1145/3205289.3205292
https://doi.org/10.1145/3205289.3205292
https://doi.org/10.1145/3205289.3205292

ICS ’18, June 12–15, 2018, Beijing, China Xue Li, Mingxing Zhang, Kang Chen, and Yongwei Wu

interface opens up the partition structure to users and allows infor-
mation to flow freely inside a partition. As a result, it can usually
converge much faster than a TLAV-based algorithm. At the same
time, this model still provides a sufficiently high level of abstraction
and is much easier to use than, for example, MPI. According to their
evaluation, a TLASG-based framework can be up to 3.1X faster than
a TLAV-based counterpart when running the connected component
detection algorithm on hash-partitioned graphs.

1.2 Proactively Repartition

The main benefit of choosing TLASG over TLAV is that the in-
formation within a whole partition can be synthesized in a single
iteration. But, if a static partition is used, the system may not be
able to unleash its possibility fully. For example, existing graph par-
titioning algorithms are designed to reduce the network traffic (i.e.,
reduce the number of cross-partition edges or vertex replicas). But,
for a TLASG-based algorithm, the quality of a partition is also af-
fected by another metric, i.e., the number of sub-graphs it produces.
Here, by using the number of sub-graphs, we refer the number of
connected components after removing all the cross-partition edges.
It is possible that the initial partition produces a large number of
small sub-graphs, which significantly offsets the benefit of using
TLASG-based algorithms. As one can imagine, even with TLASG,
the data propagation is still one hop at a time but on the super
graph1 rather than the original graph.

Thus, it is natural to think that we may speed up the processing
by proactively repartitioning the graph. Through continuously
changing the partition of a vertex, it can meet more vertices and
hence may lead to an even better convergence speed. But, the
repartition procedure itself is expensive as it typically requires
O(|E |) communication cost. In common cases, this prohibitive cost
of repartition overrides all the benefits it may have.

However, according to our investigation, it is possible to signifi-
cantly reduce the repartition cost in a TLASG-based algorithm by
reducing the graph size. The work [34] has proposed an innovative
approach to reduce the scale of the problem through temporarily
not loading the inactive vertices. Although it is based on an out-of-
core environment that is different from ours, it does inspire us to
dynamically capture the working set by eliminating parts of the
graph that don’t contribute. In our work, this can be achieved by
deleting all the unnecessary edges after processing a sub-graph,
as these edges’ information is squeezed out and hence it is mean-
ingless to retain them. The benefit of doing this is two-fold: 1). It
reduces the network cost, and this is actually a prerequisite of our
repartition-centric algorithms since only by this way the overhead
of repartition will not offset its benefits; 2). It also reduces the com-
putation cost of later supersteps, which can not be achieved by
simply using a good static partitioning algorithm.

Moreover, the above alternately-shrink-repartition technique en-
ables us to effectively scale down the problem. It is a well-known
phenomenon that the execution time of a graph application typi-
cally will first decrease with the increasing number of workers. But,
after passing a certain threshold, the execution time will increase
if more workers are used, because the communication between

1 Super graph constitutes of super vertices. Each connected component is considered
as a super vertex if it is still connected after removing all the cross-partition edges.

C
A

B

Subgraph 1 Subgraph 2

C
A

B

D

internal vertex

boundary vertex

memory
read/write,
cheap

message, expensive

Figure 1: TLASG model in Giraph++.

workers is much more expensive than that within a worker. As a
result, some works [18] try to scale down the size of the cluster for
obtaining better performance. It is natural to integrate this mech-
anism in our framework, as we alternately decrease the number
of edges (so that the needed number of workers decreases) and
repartition the graph (so that the scale down procedure doesn’t
increase additional cost). In fact, our algorithm can scale down the
problem size very fast. In most cases of our experiments, the size of
the problem is reduced to under the capability of a single machine
after running a few rounds (≤ 6).

1.3 Our Contribution

Based on the above observation, we propose a repartition-centric
distributed graph processing framework named ReGraph. Differ-
ent from existing TLASG-based frameworks, users of ReGraph
can proactively insert repartition procedures between iterations
for scaling down the problem or re-balancing the workload. We
conduct our experiments on an 8-node cluster, and as data in Sec-
tion 5 shows, in many real-world cases, applications that follow
this novel workflow can converge much faster than the traditional
algorithms, and hence lead to a significant speedup and better scal-
ability. Moreover, besides the reduction of total execution time, our
capability of scaling down the problem also leads to another merit,
i.e., we reduce the amount of computing resources used (calculated
by summing up the execution time of each worker). This character-
istic is important in a cloud/multi-tenant environment, in which
the unused workers can be assigned to other tasks.

However, our intention is to show that this novel algorithmic
design technique is both general and effective. It is proposed as an
enhancement rather than a replacement of the traditional models.
Thus, in order to assure that our technique can co-exist with existing
ones, we made the interface of our C++-based framework almost
the same as GraphX’s [15]. Therefore, it’s easy to implement our
algorithms using Spark programs. In fact, we evaluate two sets
of comparisons: 1) one is the comparison between existing graph
processing frameworks and ReGraph; and 2) the other is between
GraphX and Spark programs that follow our novel workflow. Both
experiments have shown considerable speedup (up to 45.4X).

2 BACKGROUND

To the best of our knowledge, the first publication that proposes
TLASG is Giraph++ [31]. Researchers from IBM found that the
use of TLAV-based program forces costly messaging even between
vertices in the same partition. They argue that each graph parti-
tion essentially represents a proper sub-graph of the original input
graph, instead of a collection of unrelated vertices. Thus the frame-
work should enable users to process a local sub-graph at a time.

As an illustration, Figure 1 presents a simple graph with only
four vertices and a possible 1D partition. In this example, vertices

ReGraph: A Graph Processing Framework that Alternately Shrinks and Repartitions the Graph ICS ’18, June 12–15, 2018, Beijing, China

A and B (internal vertices) are assigned to worker 1, and the other
two vertices are assigned to worker 2. As a result, although only
vertices A and B are assigned to worker 1, it also maintains a copy of
vertex C as a boundary vertex. During the processing procedure of
Giraph++, users are enabled to freely exchange the information of
two internal vertices if they are assigned to the same worker. This
kind of exchanges can even happen multiple times in one superstep.
As a comparison, updates to boundary vertices are exchanged via
message passing, which only happens once at the end of each super-
step. According to their evaluation, the graph-centric model leads
to significant reduction of network messages and execution time
per iteration, as well as fewer iterations needed for convergence.

GoFFish [29] and Blogel [38] also follow the TLASG philosophy.
They further improve the programmability and performance by
providing more flexibility to users and block-level communication.
For example, GoFFish allows an arbitrary shared-memory graph
algorithm to be used as a black box over each connected sub-graph.

3 MOTIVATING EXAMPLE

As mentioned in Section 1, the main contribution of this paper is a
general algorithmic design technique that alternately shrinks and
repartitions the graph. In this section, we demonstrate this work-
flow’s capability by presenting a thorough example on calculating
Weakly Connected Components (WCC) of a graph. Specifically, a
weakly connected component is a maximal subgraph of a directed
graph such that for every pair of vertices in the subgraph, there
is an undirected path connecting them (i.e., the two vertices are
connected after replacing all the directed edges with undirected
edges). This application lies at the core of many data mining algo-
rithms and is a fundamental subroutine in graph clustering. We first
describe the traditional TLAV and TLASG based algorithms and
point out their limitations. Then, we introduce our new repartition-
centric algorithm and discuss the possible enhancements (e.g., the
best repartitioning algorithm). Finally, we use several micro bench-
marks to show the effectiveness of our method.

3.1 TLAV and TLASG Based Algorithms

In TLAV-based frameworks, the standard way of calculating WCC
is label propagation. In this algorithm, each vertex maintains a
property that represents its component label, which is its own
vertex ID initially. In subsequent supersteps, a vertex will change
its label if it receives a smaller ID and then it will propagate this
smaller ID to all its neighbors. This method is both simple and
scalable, but not necessarily efficient. As the label is propagated to
direct neighbors at a time, it may require many rounds of messages
to converge, especially for graphs that have large diameters.

To overcome this problem, TLASG-based algorithm exposes the
whole graph partition of each worker to users. Therefore, at the
beginning of each superstep, an arbitrary shared-memory algo-

rithm can be used on every partition to immediately propagate
the smallest vertex ID2 of every local WCC to all the connected
vertices contained in the same partition. Then, only the boundary
vertex needs to send its locally computed component label to its
corresponding internal vertex. Both algorithms finish when there
is no further update. It is obvious that the TLASG-based algorithm
2Smallest ID among both the internal vertices and messages sent from other partitions.

A
B

C

D

E

F

G

H

I

A
B

C

D

E

D

E

F

G G

H

I

G

H

I
A

B

C

D

E

G

D

E

D

E G

Subgraph 1 Subgraph 2 Subgraph 3

(a)

(b)

(c)

(d)

D

E

F

G

D

E G

Figure 2: An example of graph shrinking.

can be much faster than the TLAV-based counterpart. But, as men-
tioned in Section 1, the effect of this optimization heavily depends
on the quality of the partition. The possibility of TLASG may not be
fully unleashed if the super graph produced by the initial partition
still has a large diameter.

3.2 Repartition-centric Algorithm

3.2.1 Overview. To overcome the shortages of TLAV-based and
TLASG-based algorithms, we propose a repartition-centric algo-
rithm for WCC. As an overview, the whole procedure of this algo-
rithm contains two phases:

1). The algorithm starts from a scale-down phase that effi-
ciently scales down the problem’s size (i.e., number of edges re-
mained in the graph). As an illustration, Figure 2 (a) presents an
example of the initial and ending state of a single process iteration
(i.e., a superstep). As we can see, the number of edges is largely
reduced from 13 to only 3. Typically, we will reduce the number of
used workers while the size of the problem is decreased until all
the remained edges can be contained in a single worker.

2).According to our evaluation, only a few supersteps are needed
to shrink the original problem into a smaller one that can be han-
dled by a single worker, which is the end of the scale-down phase.
However, the results calculated on only this smaller problem may
not reflect the whole results. Consequently, our algorithm also has a
back-propagation phase that propagates the results back in just
the reverse order of the former scale-down phase.

3.2.2 Scale-down Phase. Specifically, in each superstep of the
scale-down phase, the edges of the graph are first equally par-
titioned into different workers (i.e., we use the 2D partitioning
algorithm proposed by PowerGraph rather than the 1D methods
used by Pregel and Giraph++). We ask users to set a thresholdT that
designates the minimum number of edges that should be contained
in a worker. It depends on the memory size of each machine, and
an alternative approach is automatically setting it to be the initial
number of edges. Thus, when the number of edges decreases, the
number of used workers is correspondingly reduced. Figure 2 (b)
illustrates a possible result of the partition. In this figure, vertices
represented by filled circles are shared vertices. Similar to bound-
ary vertices defined in Giraph++, a vertex is shared if its edges are

ICS ’18, June 12–15, 2018, Beijing, China Xue Li, Mingxing Zhang, Kang Chen, and Yongwei Wu

not all assigned to the same worker. As a result, there are two or
more workers containing a replica of this vertex. In contrast, the
other vertices represented by white circles are local vertices. We
do not need to store a full copy of the graph in each node, thus the
data of vertices are shuffled during repartitioning. But, since we
scale down the problem size by removing unneeded vertices/edges,
the data-copy cost of this shuffling is typically much less than an
ordinary communication round of other frameworks.

After partitioning, an arbitrary shared-memory algorithm can
be used to calculate the local connectivity relationship of each
partition, such as DFS, BFS, and the disjoint-set union algorithm
(which we use) [13]. With this local connectivity information, we
can now reconstruct the whole graph partition into a new sub-
graph that 1) preserves the same connectivity characteristic of
the original graph partition; but 2) has theminimum number of
edges. Theoretically, the optimal way of doing such reconstructing
is transforming the original partition into a forest. As Figure 2 (c)
shows, each graph partition is rebuilt into a forest3 by 1) deleting all
the original edges; and 2) adding one edge for each vertex that points
to the center (whose ID is the component label) of its corresponding
local WCC. In other words, after the transformation, every local
WCC is represented by a star-like tree, and all the vertices of a local
WCC are still connected. We will explain why the star shape is most
suitable for our use case in Section 3.3. Essentially, this procedure
remarkably reduces the graph’s size. A subgraph with |E ′ | edges
and |V ′ | vertices will only hold “|V ′ |− (number of local WCCs)”
edges after the transformation.

Although the above procedure can largely decrease the number
of edges, its theoretical limitation is reducing the number of edges
to “|V |− (number of WCCs)” edges, where |V | is the number of
vertices in the original graph. In fact, we can further reduce the
graph’s size by removing all the local vertices (as shown in Figure 2
(d)). Because all the edges of a local vertex are in the same worker,
we can assure that these edges will not incur any further merging
of two local WCCs in later supersteps. In other words, the deleting
of local vertices will not affect the connectivity characteristics of
the original graph. Therefore, we can delete a local vertex, only
recording that its final WCC should be the same as its local WCC’s
center’s. Note that since we delete all local vertices when recon-
structing subgraphs, we can only choose a shared vertex (if exists)
as the center of a local WCC, instead of choosing the vertex with
the smallest ID (as TLAV or TLASG-based algorithms).

After the above procedure, the original graph (the left one in
Figure 2 (a)) is transformed to a new one (the right one in Figure
2 (a)) that has much fewer edges. Then, we can scale down the
cluster’s size, repartition the new graph (move all edges left to the
same node as only a single node remains in this example), and start
computation for the next iteration. This iterative procedure finishes
when only one node left.

3.2.3 Back-propagation Phase. After scaling down to only one
worker, we can easily decide the final component of every re-

mained vertex. However, such result is only a subset of the whole
result, because many vertices are deleted for being local vertices in

3 The number of trees contained in the result forest should be equal to the number of
local WCCs in the original graph partition. As a result, only a single tree is contained
in each forest produced in our example.

Subgraph 1 Subgraph 2 Subgraph 3

A B C D E
A B C D E

D E F G
D E F G

G H I
G H I

A B C D E
D D D D D

D E F G
D D D D

G H I
G G G

D E G
D D D

A B C D E F G H I

D D D D D D D G G

A B C D E F G H I

D D D D D D D D D

Iteration 0

Iteration 1

Iteration 2

Reverse
Iteration 0

Reverse
Iteration 1

Vertex

Label

Vertex

Label

Vertex

Label

Vertex

Label

Vertex

Label

Figure 3: Execution procedure of a WCC example.

a certain superstep. As a result, we still need a back-propagation
phase that constructs the final results by propagating information
in just the reverse order of the former scale-down phase.

As illustrated in Figure 3, each vertex maintains a label demon-
strating the component it belongs to, which is its own ID at the
beginning (iteration 0). And at the end (iteration 2), we can easily
find that all the remained vertices (D, E, and G) belong to the same
WCC so that they are assigned with the same label (D). The problem
here is that, in iteration 1, vertices A, B, and C are deleted because
they are local vertices of graph partition 1, so that these vertices’
final labels cannot be inferred in iteration 2. Similarly, vertex F, H,
and I are also deleted because they are local vertices of graph parti-
tion 2, 3, 3, respectively. Therefore, before deleting a local vertex,
we record the information about which vertex is its corresponding
local WCC’s center, and we can assure that the final label of a lo-
cal vertex must be the same as this center’s. As an example, the
final label of A, F, I must be the same as the final label of D, D, G,
respectively. With such information, we can simply construct the
final results by back propagating the final label information in a
backward direction (Figure 3). Since this back-propagation phase
is unique in our algorithm, one may think that it is complex and
hence increases the programming overhead of users. However, as
we will show in Section 4.4 with pseudocode, these steps can be
implemented very straightforwardly by using the well-known “join”
operation, which is already very familiar to users.

3.3 Partitioning Algorithm

Although the quality of the initial partition does not have a decisive
impact on the performance of our algorithm since we continuously
repartition the graph, the partitioning algorithm still plays a vital
role. In traditional graph frameworks, there are only two main
metrics that are used to evaluate a partitioning algorithm: 1) the
skewness; and 2) the amount of communication cost that it produces.
But, in our algorithm, we need to choose an algorithm that is 1)
lightweight and 2) produces a partition that we can delete as many
edges as possible. The first requirement is because we need to
use this partitioning algorithm for multiple times rather than only
producing an initial partition, and hence only the heuristic-based
simple partitioning algorithms are practical. As for the second
requirement, the more edges that we can delete, the less cost are
the following repartition and computation steps.

ReGraph: A Graph Processing Framework that Alternately Shrinks and Repartitions the Graph ICS ’18, June 12–15, 2018, Beijing, China

Table 1: Execution time and iterations needed of WCC.

TLAV TLASG Repartition
Dataset Time Iter Time Iter Time Iter
Pokec 6.249s 10 35.06s 9 2.110s 2
LiveJ 10.18s 12 74.31s 10 4.279s 3
Dimacs 2565s 6262 926.0s 18 21.93s 4

Actually, after each iteration, one edge remains for every shared
vertex if it is not chosen to be center of its local WCC. So, the
number of result edges after a shrinking step is “(number of shared
vertices) - (number of localWCCs)”. Since the second variable of this
formula is hard to control, our goal is to minimize the first variable,
i.e., reduce the number of shared vertices as much as possible.

Coincidentally, an existing partitioning algorithm hybrid-cut [6]
is reported to be able to satisfy our requirement, in PowerLyra
system that proposes hybrid-cut, the communication cost is also
proportional to the number of shared vertices. As a result, although
hybrid-cut is only designed for reducing communication cost, it is
also able to maximize the number of edges that will be deleted for
us. However, the effectiveness of hybrid-cut is achieved by treating
high-degree and low-degree vertices differently, which is useful
only when the degree distribution of the graph is very skewed.
This is not a problem for its original use case because most real-
world graphs follow the power-law distribution. But, in order to use
hybrid-cut in our algorithm, we must assure that the same property
remains for all the graphs that are reconstructed by every shrinking
step. So, we reconstruct the graph into a forest of star-like trees,
which has the most skewed degree distribution.

3.4 Micro Benchmark

In this section, we use some micro benchmarks to validate that our
algorithm can significantly reduce the computation cost and hence
lead to a better performance. More comprehensive evaluations are
presented in Section 5. We evaluate all of the three WCC algo-
rithms we have introduced on three different real-world datasets.
Specifically, we implement our repartition-centric algorithm in C++
and MPICH2 and fix the threshold T to 5 million edges. We also
test PowerLyra as a representative of TLAV-based frameworks,
since PowerLyra is reported to be faster than other TLAV-based
frameworks such as PowerGraph, GraphLab, and Giraph. As for
TLASG-based frameworks, we choose Giraph++. We don’t test Blo-
gel because although it provides the most efficient TLASG-based
WCC algorithm, this implementation depends on an expensive pre-
processing procedure to partition the graph (e.g., more than 20s for
the Pokec graph), which spends much more time than the entire
execution of our algorithm.

Table 1 shows the performance evaluated by running these three
algorithms on 8workers. Aswe can see, the TLASG-based algorithm
typically requires fewer iterations than the TLAV-based algorithm,
and our repartition-centric algorithm requires even fewer. Take Di-
macs, a real-world road graph that has an extremely large diameter,
as an example, the TLASG-based algorithm remarkably reduces
the number of iterations from 6262 to 18, and our algorithm can
further reduce this number to 4. As for performance, the iteration
reduction achieved by Giraph++ only leads to a better performance
on Dimacs mainly because Giraph++ is implemented in JAVA. In

0

10

20

30

40

50

60

70

0 1 2 3 4

Ed
ge

 s
iz

e
(M

)

Iterations

Pokec LiveJ Dimacs

Figure 4: Number of remained edges.

contrast, our repartition-centric algorithm always achieves the best
performance, which is about 2.4-42.2 times faster than the best of
TLAV and TLASG. In addition, we also re-implemented the TLASG-
based algorithm in C++ and MPICH2 for a fair comparison, and our
algorithm still shows a considerable speedup (1.5X-9.3X).

To further demonstrate the scaling-down capability of our algo-
rithm, we count the number of remained edges for each iteration.
As shown in Figure 4, the number of edges is decreased by 68.5%-
78.5% in the first iteration. Moreover, only a few more iterations
are needed to reduce the number of edges to less than the T we set.

4 REGRAPH

In order to facilitate users to design and implement repartition-
centric algorithms, we built a new graph processing framework
named ReGraph. In this section, we first describe the typical work-
flow of ReGraph. Then, we introduce the data and programming
model of it, which are very similar to GraphX’s [15]. Finally, we
use an example to demonstrate the usages of ReGraph.

4.1 Overview

Figure 5 presents the standard workflow of a ReGraph program. For
each iteration, the program will first repartition the graph. Then,
it will process the sub-graphs concurrently and properly delete
the unnecessary edges. Take WCC as an example, 1) its processing
phase is a local procedure that finds local WCCs on each graph
partition; and 2) the following shrinking phase refers to the graph
transformation procedure (i.e., from sub-graph to forest).

Note that at the beginning of each iteration, the graph is first
repartitioned to obtain a more balanced workload and shuffle the
belonging of vertices. During this procedure, we require that each
working node should receive at least T edges so that the size of
the cluster is scaled down to no more than current_edдe_size/T
nodes if necessary. Typically, the distributed iterative execution will
terminate after all the remaining edges can be handled by a single
worker. After that, more processing may be needed to complete the
algorithm. As for WCC, a back-propagation procedure is executed.

Initialization Repartition

Process

Shrink Post-Process
otherwise

clu
ster size > 1

Figure 5: Main workflow of ReGraph.

ICS ’18, June 12–15, 2018, Beijing, China Xue Li, Mingxing Zhang, Kang Chen, and Yongwei Wu

Table 2: Data model and programming model of ReGraph.

Data
KVC < K ,V > {N , hash_table < K ,V > data}
SGC < E > {N , vector < Edдe < E >> edдe_set}
Core API of KVC
get(K) –>V
set(K , V) –>void
sync(

merдer : (V , V) –>V
) –>KVC
join(

KVC∗,
joiner : (K , V , V) –>K , V

) –>KVC
Core API of SGC
mapGraph(

vector < KVC∗ >,
updater : (vector < Edдe >&, vector < KVC∗ >) –>SGC

) –>SGC
partition(

int ,
vector < KVC∗ >,
partitioner : (Edдe∗, vector < KVC∗ >) –>int

) –>SGC

4.2 Data Model

As we have mentioned previously, in order to lower users’ porting
cost, we define the data and programming model of ReGraph in a
way that much similar to GraphX. Specifically, there are only two
kinds of data structures are provided, as illustrated in Table 2.

The first one isKVC (Key-Value Collection), which is a collection
of key-value pairs that are distributed among the used workers.
Each used worker will maintain a subset of the whole set of key-
value pairs. KVC is very similar to the “PairRDD” defined by Spark.
But, in ReGraph, 1) key-value pairs assigned to each worker are
maintained in a hash table rather than a simple vector, and it enables
us to efficiently implement the get and put operations; 2) a parameter
N is designated to specify the number of used workers. When the
size of the cluster is scaled down, one can reduce this parameter and
then a repartitioning procedure is invoked to reduce the number of
used workers.

The second high-level data structure is SGC (Sub-Graph Col-
lection), which is a collection of edges that are also distributed
among the N used workers. Similar to the “EdgeRDD” provided
by GraphX, ReGraph uses 2D partitioning so that each worker is
simply assigned with a disjoint set of edges. As we will show by
examples presented in Section 4.4, KVC is usually used to store
vertex data (use vertex ID as keys and the corresponding properties
as values) while SGC is typically used to store edge data.

4.3 Programming Model

ReGraph provides only a limited set of operations for accessing
the data defined in KVC and SGC . In this section, we will describe
the main APIs one by one, and then, in the next section, we will
demonstrate their usages with an example.

(1,3)
(3,4)

(1,5)
(2,0)

kvc2=kvc1. sync((x, y) -> x+y)

(1,8)
(3,4)

(1,8)
(2,0)

kvc1 kvc2

(1,3)
(3,2)

(2,0)

kvc3=kvc1. join(kvc2, (x, y, z) -> (x, z))

(0,9)
(1,4)

(2,6)
(3,5)

kvc1 kvc2

(1,5)
(3,6)

(2,9)

kvc3

W
o

rk
er

1

W
o

rk
er

2

Figure 6: An illustration of KVC’s operations.

4.3.1 Operating Key-Value Collection. As Table 2 shows, Re-
Graph allows users to directly access a single key-value pair con-
tained in KVC via the дet() and set() APIs, which are both local

operations. Thus, a single key can actually appear multiple times in
the sameKVC , as long as different pairs are maintained by different
workers. For example, although pairs (key, v1) and (key, v2) have
the same key, they can simultaneously exist in the same KVC x ,
if (key, v1) is stored on worker i , (key, v2) is stored on worker j,
and i , j. In this case, x.get(key) will return v1 if it is executed on
worker i and will return v2 if it is executed on worker j.

In order to synthesize values on different workers, we also pro-
vide two other APIs, namely sync and join, as illustrated in Figure 6.
Both APIs are global operations that will incur network communi-
cation. Specifically, sync() takes a user-definedmerдer to combine
values of the same key on different workers for a single KVC . For
example, if a specific key is stored on three different workers 1, 2, 3
and the corresponding pairs are (key,v1), (key,v2), and (key,v3) re-
spectively. After performing a sync() operation, each of these three
workers will still contain a key-value pair whose key is still key;
but the value of these three copies will be the same v ′ that equals
tomerдer (v1,merдer (v2,v3)). One should note that: 1) for every
worker, a key-value pair (key,v ′) will exist in the resulting dataset
if and only if there is a pair (key,v) originally; and 2) themerдer
function is required to satisfy the commutative and associative law,
so that the order of performingmerдer function does not matter
(e.g.,merдer (v1,merдer (v2,v3)) ==merдer (merдe(v3,v1),v2)).

The other operation join() takes two KVCs as input to compute
a new one. It requires that the second input KVC has no data for
the same key on different workers (or at least have the same value).
Another requirement is that the first KVC’s datatype for value
is the same with the second KVC’s datatype for the key. With
these constraints, the join operation performs in the following
manner: for each pair (a,b) in the first input KVC , it will find
the corresponding pair (b, c) in the second input KVC , and then
outputs a (key,v) into the generated KVC where (key,v) equals to
joiner (a,b, c). Note that this operation is kind of different from the
one used in Spark for better convenience, though the function of
our join could be implemented using the traditional join operation.

4.3.2 Operating Sub-Graph Collection. As ReGraph is a TLASG-
based framework, its only core API that processes graph data is a
mapGraph() operation that exposes the whole graph partition to
users. This operation takes an old SGC and a set of KVCs as input
to calculate a new SGC . Within its scope, users are allowed to define
arbitrary shared-memory algorithms that can 1) add or delete edges
to/from the local graph partition by modifying the edge_set; and 2)
read and modify properties stored in the inputKVCs via the get and
set operations. The only requirement is that all these operations
are performed locally.

ReGraph: A Graph Processing Framework that Alternately Shrinks and Repartitions the Graph ICS ’18, June 12–15, 2018, Beijing, China

Algorithm 1 Program for WCC.
Data

SGC < void > д;
KVC < V ID, EID > local_deдree, deдree ;
KVC < V ID, V ID > center, r esult, unknown;
stack < KVC < V ID, V ID >> s ;
vector < Edдe < void >> new_edдe_set ;
vector < KVC∗ > kvcs = {... };//pointers to all above KVCs

Functions

count_deдree():
foreach (u, v) in edдe_set

local_deдree .set (u, local_deдree .дet (u) + 1);
local_deдree .set (v, local_deдree .дet (v) + 1);

return д(edдe_set);
local_WCC():

sequentialWCC(); //run a sequential WCC algorithm
unknown, new_edдe_set = {};
foreach (v, c) in center

if !islocal (v)
new_edдe_set .push(Edдe(v, c));

else if !islocal (c)
unknown .set (v, c);

else

r esult .set (v, c);
return new_д(new_edдe_set);

Computation for each iteration

д = д .mapGraph({&local_deдree }, count_deдree);
deдree = local_deдree .sync((a, b) –>a + b);
д = д .par tit ion(N , {&deдree }, hybr id_cut);
д = д .mapGraph({&local_deдree }, count_deдree);
deдree = local_deдree .sync((a, b) –>a + b);
д = д .mapGraph(kvcs, local_WCC);
s .push(unknown);

Post-process

while !s .empty()
unknown = s .pop();
unknown = unknown .join(r esult, (a, b, c) –>(a, c));
r esult = {r esult, unknown };

return r esult ;

In fact, there are only two kinds of communication that may hap-
pen in ReGraph. The first is caused by global KVC operations (i.e.,
sync and join), which are usually used to synchronize vertex data.
This procedure is similar to the communication pattern of existing
TLASG-based frameworks. For example, as we have described in
Section 2, in the end of each superstep, Giraph++ needs to synchro-
nize the vertex property. In ReGraph, it can be implemented by a
single sync operation on the corresponding property KVC .

Moreover, as ReGraph tries to proactively repartition the graph,
it also provides another API partition() that will repartition the
graph’s edge set. The first parameter of this function is an integer
N , which indicates that the edges contained in this SGC should
be repartitioned into N parts. The third parameter of this func-
tion is a user-defined function called partitioner . The execution of
partitioner will consume an edge and output a hash code h, which
indicates that this edge should be assigned to worker h%N . As the
decision of this assignment may require the access to some ver-
tex properties, these properties can be passed to the partition()
function by using its second parameter, which is a vector of KVCs.

4.4 Example

To illustrate the usages of ReGraph’s API, we present the imple-
mentation of our WCC algorithm (Algorithm 1).

Specifically, at the beginning of each iteration, a local function is
called to count the degree of each vertex in the local graph partition
(via amapGraph operation). Then, the global degree of each vertex

Table 3: A collection of real-world graphs.

Dataset Vertices Edges Description
Pokec [19] 1.63M 30.6M Pokec social network
LiveJ [19] 4.85M 69.0M LiveJournal social network
Dimacs [10] 23.9M 58.3M Full USA road network
UK-2002 [3–5] 18.5M 298M Web graph of the .uk domain
Twitter [17] 41.7M 1.47B Twitter social network

can be calculated from local degree through using a sync() function.
This degree information is then used for repartitioning the graph
with hybrid-cut [6]. After repartitioning, local degree and global
degree should be calculated once again for deciding whether a
vertex contained in the partition is a local or shared vertex. With all
the above information, the local_WCC() is executed concurrently
on every worker to process and shrink the graph partition that it
holds. Within this function, any shared-memory WCC algorithms
could be utilized. To shrink the graph, we process each vertex v
and the center c of the corresponding component: 1) if v is shared,
an edge (v , c) should be added to the new edge set; 2) if v is local
but c is shared, record in unknown that the final label of v is the
same as the final label of c; 3) otherwise, c is the final label for v ,
which can be added to the result directly.

After all iterations finish, a back-propagation procedure is re-
quired to get the final labels for those vertices added tounknown. In
each reverse iteration, unknown is first joined with result to decide
the final labels for vertices in it, which are then added to result .

5 EVALUATION

In this section, we present the evaluation results of ReGraph. Specif-
ically, we choose four representative graph applications (WCC,
MIS, MCST, and TC) and redesign the original algorithm into a
repartition-centric manner. Each of them represents a general cat-
egory of graph algorithms and is frequently used as a subroutine
of more complex algorithms, which demonstrates that our general
algorithmic design technique has a large range of applicability.

To further demonstrate the effectiveness of ReGraph, we imple-
ment the above algorithms and compare them with state-of-the-art
systems. As these four applications are not always supported by
all the existing systems, we always try every existing system and
report the comparison between ReGraph and the best of others
(the system that achieves the best average performance). Moreover,
we also present an example of implementing repartition-centric
algorithms on top of Spark, and compare it with GraphX, which is
also a Spark-based graph processing system. Results show that our
technique is not bounded to our system. Users can take advantage
of it even though they do not want to change the platform.

5.1 Evaluation Setup

All our experiments are conducted on an 8-node Intel(R) Xeon(R)
CPU E5-2640 based system. All nodes are connected with a 1Gb
ethernet and each node has 8 cores running at 2.50 GHz. In or-
der to perform the comparison, the latest version of PowerLyra,
GPS, Giraph++ and GraphX are installed on the cluster. We use a
collection of real-world graphs, the basic characteristics of each
dataset are illustrated in Table 3. All of these graphs except Dimacs
are social graphs that satisfy the power-law degree distribution.

ICS ’18, June 12–15, 2018, Beijing, China Xue Li, Mingxing Zhang, Kang Chen, and Yongwei Wu

Instead, Dimacs is the full USA road network which has a large
diameter. For unweighted graphs, random weights (∈ (0, 1)) are
added to each of the edges if necessary.

5.2 Applications

In this section, we briefly introduce the four applications and their
implementations in both ReGraph and other systems.

5.2.1 WCC. The design of our repartition-centric WCC algo-
rithm is already presented in Section 3. As a comparison, we will
also report the performance of PowerLyra’s built-in TLAV-based
WCC application, because although Giraph++ provides a TLASG-
based WCC application that requires much fewer iterations than
PowerLyra, our evaluation results show that its performance is
typically still lower than PowerLyra (except on Dimacs).

5.2.2 MIS. Maximal Independent Set (MIS) is another important
and widely-used graph application, whose output is an arbitrary
maximal independent set of the input graph. In graph theory, a set of
vertices constitutes an independent set if and only if any two of the
vertices that contained in it do not have an edge connecting them. A
maximal independent set S is then a set of vertices that 1) constitutes
an independent set; and 2) there does not exist another independent
set S ′ that is a proper superset of S (i.e., S ′ ⊃ S). Different fromWCC,
MIS is hard to be implemented in a message-passing model and
hence is not provided by most existing graph processing systems.To
the best of our knowledge, GPS is the only graph processing system
that contains a distributed MIS implementation, which is based on
Luby’s classic parallel algorithm [21]. GPS is an open-source Pregel
implementation from Stanford Infolab, which was reported to be
12X faster than Giraph [25].

However, MIS can be solved very easily in our framework. For
each iteration, we just need process all local vertices one by one in
each partition. If a local vertex has no neighbors in the MIS, we can
safely add it to the final result and then all its neighbors (no matter
local vertices or shared vertices) will never appear in the MIS. In
other words, an edge will remain in an iteration if and only if both
of its vertices are shared vertices and have no neighbors in the MIS.

5.2.3 MCST. Minimum Cost Spanning Tree (MCST) is an appli-
cation that calculates a spanning tree of a connected, undirected,
weighted graph. This tree should connect all the vertices of the
graph with the minimum total weight of its edges. For unconnected
graphs, we calculate an MCST for every connected component, i.e.,
a minimum spanning forest. MCST is an important graph applica-
tion that is used directly in the design of networks and invoked
as a subroutine in many other algorithms, such as [7, 9, 30]. As a
result, sequential MCST algorithms have been well studied, such
as Kruskal’s algorithm [16], which we use. However, distributed
MCST is usually very complex. As far as we know, GPS is the
only graph processing system that provides a distributed MCST
implementation, thus we use GPS as a baseline.

In contrast, rather than using the complex algorithm (e.g., the
parallel Boruvka algorithm [8]), MCST can be solved extremely sim-
ply in ReGraph. It can be easily proved that, if an edge is not used
in the MCST of a sub-graph, it is also not needed in the generation
of the whole graph’s MCST. With this property, we can efficiently
shrink the size of the problem by deleting unneeded edges. This

L low-degree

H high-degree

L

H H
(3)

L

H L
(2)

L

L L
(1)

H

H H
(4)

Figure 7: The four kinds of triangles.

technique enables our algorithm to work on extremely large graphs.
After the shrinking procedure, we will scale down the cluster size if
necessary, repartition the graph and continue computation, just the
same as WCC’s or MIS’s workflow. When there is only one worker
remained, all edges in the local MCST will be added to the result.

5.2.4 TC. Triangle Counting (TC) is a basic problem that is
used as a subroutine of many important social network analysis
algorithms [2, 11, 35, 36]. This application counts the number of tri-
angles in an undirected graph, where a triangle is formed by three
vertices and edges between each pair of them. We use an imple-
mentation of TC in PowerLyra to compare with our work. Actually,
there are two versions of implementations of TC in PowerLyra. We
choose the optimized one that implements the “hash-table” version
of “edge-iterator” algorithm described in [27] to be the baseline.

In our system, we propose a novel repartition-centric TC algo-
rithm. Inspired by hybrid-cut, we divide the vertices into two cate-
gories (high-degree and low-degree) and process them differently.
Then, all the possible triangles can be divided into four categories
(Figure 7) and only the first three types (have at least one low-
degree vertex) will be counted in each iteration. Specifically, in an
iteration, an edge is processed if and only if: A) it is between two
low-degree vertices; or B) it connects a low-degree vertex and a
high-degree vertex. For a type A edge, we allocate it according to
the vertex with the smaller ID. While when allocating a type B
edge, the low-degree vertex’s ID is considered. As a result, each
low-degree vertex is stored in exactly one partition with two sets
containing these two kinds of edges respectively: 1) one set con-
tains all its high-degree neighbors (type B edges); and 2) the other
contains all its low-degree neighbors whose ID are greater than
itself (type A edges). As for the edges between high-degree vertices,
a hash-based random partition method is used.

In each iteration, we count the number of triangles containing
at least one low-degree vertex (the first three types of triangles
in Figure 7). The first two kinds of triangles could be counted by
counting the intersections of two low-degree vertices’ neighbor
sets (sets containing low-degree neighbors for the first kind of
triangle, and sets containing high-degree neighbors for the second
kind). While for the third kind, we can enumerate two vertices of a
low-degree vertex’s high-degree neighbors and check if the edge
between them exists. In the end of an iteration, the graph is shrunk
by removing all the low-degree vertices. After the shrinking, many
of the original high-degree vertices become low-degree vertices and
then the above procedure is executed once again. The algorithm
ends only when all the remained edges can be held in one machine.

Essentially, the advantage of our algorithm can be explained by
the famous inequality of

(a0 + a1 + ... + an)
2 ≥ a20 + a

2
1 + ...a

2
n

Through processing only low-degree vertices in each iteration, we
gradually transform high-degree vertices into low-degree vertices.
The aggregating complexity is similar to the transformation from

ReGraph: A Graph Processing Framework that Alternately Shrinks and Repartitions the Graph ICS ’18, June 12–15, 2018, Beijing, China

Table 4: Execution time (in second/iteration). Since GPS’sMIS implementation is a stochastic algorithm, we run it several times

for each case and present the average execution time as well as the number of iterations.

Pokec LiveJ Dimacs UK-2002 Twitter

WCC
workers ReGraph PowerLyra ReGraph PowerLyra ReGraph PowerLyra ReGraph PowerLyra ReGraph PowerLyra
8 2.110/2 6.249/10 4.279/3 10.18/12 21.93/4 2565/6262 12.77/3 65.92/29 40.23/3 60.35/15
64 2.110/2 7.284/10 3.627/3 11.18/12 23.70/4 2520/6262 15.66/4 68.99/29 21.05/3 67.92/15

MIS
workers ReGraph GPS ReGraph GPS ReGraph GPS ReGraph GPS ReGraph GPS
8 3.647/3 140.3/51.1 6.333/3 167.5/65.3 9.746/2 175.8/59.1 22.38/3 284.4/87.3 84.50/3 468.7/69.4
64 3.336/3 151.4/51.1 6.535/3 188.6/65.3 11.11/2 186.5/59.1 20.20/3 253.1/87.3 46.20/3 337.5/69.4

MCST
workers ReGraph GPS ReGraph GPS ReGraph GPS ReGraph GPS ReGraph GPS
8 3.607/2 39.55/14 8.419/3 138.7/27 10.67/2 442.5/137 30.98/5 341.4/86 181.0/5 635.0/36
64 3.632/2 38.91/14 9.615/4 75.69/27 11.20/2 413.4/137 34.11/6 280.3/86 129.2/6 252.7/36

TC
workers ReGraph PowerLyra ReGraph PowerLyra ReGraph PowerLyra ReGraph PowerLyra ReGraph PowerLyra
8 4.387/3 3.181/1 8.730/3 6.418/1 8.967/1 9.834/1 19.05/3 31.14/1 - -
64 1.809/3 4.034/1 3.925/3 6.680/1 1.472/1 5.009/1 8.018/3 29.70/1 - -

the left part of the above inequality to the right part (where ai repre-
sents the decreasing in the degree of iteration i), which guarantees
the complexity of our method is much smaller than PowerLyra’s.

5.3 Overall Performance

Table 4 demonstrates the results on overall execution time of each
application on five datasets, except TC, which fails on Twitter due
to exhausted memory (all of our system and other systems fail).
For each case, we conduct the execution on ReGraph and every
other existing system if it supports this algorithm. The comparison
between ReGraph and the existing system that achieves the best
average performance (PowerLyra forWCC and TC, and GPS forMIS
and MCST) is reported. In order to be fair, the initial pre-processing
(e.g., the first partitioning) time of every system is not included. In
contrast, for ReGraph, the reported time includes all the cost of
following repartitioning and the post-processing.

As we can see, our system can achieve a significant speedup
over existing systems, especially when a large number of iterations
are needed in their execution. ReGraph outperforms PowerLyra
by up to 117.0X and 3.7X on WCC and TC respectively, and the
speedup to GPS onMIS andMCST can be up to 45.4X and 41.5X. The
reasons of why ReGraph can outperform these existing frameworks
are two-fold: 1) our repartition-centric model needs significantly
fewer iterations for convergence; 2)we adopt a shrink strategy thus
the graph size is dramatically decreased while processing, which
leads to a much lower computation and communication cost in the
following supersteps. A closer look shows that the speedup on TC
is caused by the second reason, though more iterations are used,
while the speedup on other applications is caused by both reasons.

5.4 Total CPU Execution Time

Besides the overall execution time, our repartition-centric algo-
rithms’ capability of scaling down the problem size provides more
benefits. Specifically, in a cloud (i.e., pay-per-use) or a multi-tenant
environment, after we scale down the problem size and decide to
use fewer workers, the unused workers can be assigned to other
tasks for better resource utilization.

As a result, we also compare the total resources consumption
between ReGraph and other systems by measuring the sum of each

0

200

400

600

800

8 16 32 64
Ti

m
e(

s)
 o

n
Li

ve
J

Workers

REGRAPH PowerLyra

0
1000
2000
3000
4000
5000

8 16 32 64

Ti
m

e(
s)

 o
n

Tw
itt

er

Workers

REGRAPH PowerLyra

Figure 8: Total CPU time for WCC on LiveJ and Twitter.

worker’s execution time. For existing systems that do not scale
down the cluster, this number is actually the product of overall
execution time and the cluster size. In contrast, this number for
ReGraph is calculated by summing up the execution time of each
worker. As Figure 8 illustrates, the reduction on this metric is even
larger than the speedup on overall execution time (up to 11.6X).
Typically, smaller the graph is, or more workers there are in the
cluster, we save more consumed resources.

5.5 Time Breakdown and Scalability

To further analyze the performance of ReGraph, we conduct a
piecewise breakdown analysis (Figure 9) that mainly divides the
overall execution time into three categories: 1). time to compute,
which is mainly spent on local processing; 2). time to communicate,
which is caused by repartition and information exchange between
workers; 3). time to do other things, such as prepare data to be sent.
We can find that with the increase of the initial number of workers,
the overall execution time is decreased as well as the computation
time. Simultaneously, the communication time accounts to more
and more percentages of total time, which is a common pattern that
limits the scalability of all kinds of distributed graph processing
systems. However, since we will scale down the cluster size to a
proper size during execution, the increase of communication time
in ReGraph is less than other systems.

0
25
50
75

100

8 16 32 64 8 16 32 64

Ti
m

e(
s)

Workers

Computation
Communication
Others

WCC MIS

Figure 9: Time breakdown for WCC and MIS on Twitter.

ICS ’18, June 12–15, 2018, Beijing, China Xue Li, Mingxing Zhang, Kang Chen, and Yongwei Wu

0

20

40

60

80

8 16 32 64

Ti
m

e(
s)

 fo
r W

CC

Workers

REGRAPH PowerLyra

0

100

200

300

400

500

8 16 32 64

Ti
m

e(
s)

 fo
r M

IS

Workers

REGRAPH GPS

Figure 10: Scalability of WCC and MIS on Twitter.

Actually, increasing number of nodes bring quicker computation
as well as two negative effects to ReGraph: 1) more nodes lead to
more communication; and 2) since the number of vertex replicas
increases, for most algorithms, our shrink strategy could delete
fewer edges, thus leads to more computation (possibly more itera-
tions). ReGraph doesn’t scale well on MCST mainly because of the
second reason. Though these potential limitations exist, since our
model needs far fewer iterations and automatically scales down the
cluster size, thus reduces the total network traffic, ReGraph scales
better than other existing systems in most situations, as Figure 10
shows. We believe that for even larger graphs used in industry, our
system will be able to scale to hundreds of nodes.

5.6 Implementation in Spark

Table 5: Execution time for Spark-based implementations.

Pokec LiveJ Dimacs UK-2002 Twitter
GraphX 49.48s 88.57s >36000s 219.8s 848.8s
Our Model 20.10s 47.44s 127.2s 135.1s 464.7s

As we have discussed in Section 1.3, our repartition-based model
is an enhancement rather than a replacement of the traditional
models. To prove that it can co-exist with existing frameworks,
we implement our repartition-centric WCC algorithm on top of
Spark and compare it with GraphX. In fact, this implementation is
extremely similar to Algorithm 1 except using Spark RDD instead
of our data structures. Table 5 shows the performance evaluated by
running both our Spark-based implementation and GraphX on 8
workers, and our model shows a considerable speedup over GraphX.

In fact, the implementation of our repartition-centric WCC algo-
rithm based on Spark is about 5.8-11.6 times slower than the one
implemented in ReGraph (based on C++ and MPICH2). This is
mainly caused by two reasons: 1). The object model of JVM causes
more overhead on Spark, which leads to a lower performance [37].
This is also the main reason of why GraphX is slower than Power-
Lyra, although they both adopt the TLAV-based model and need
the same number of iterations for convergence; 2). The semantics
of join operation is kind of different between in Spark and in Re-
Graph. In the back-propagation phase, a single join operation is
needed every time in ReGraph. In contrast, besides join, there are
also several map operations are needed to implement the same
semantics in Spark, thus lead to more overhead.

5.7 Discussion

5.7.1 Applicability. The most important limitation of ReGraph
is that not all graph processing algorithms can benefit from our
proposed shrinking and repartition techniques. For some applica-
tions, it’s impossible or difficult to find an effective and lightweight
shrink strategy. However, as demonstrated by the above sections,

we have already found a lot of graph applications that can bene-
fit from our method. Since all of these algorithms prevalently use
basic operations, many advanced graph analysis applications are
implemented based on them. For example, WCC and MIS are used
as sub-routines in many graph clustering algorithms, and TC is also
a common sub-routine of many community analysis algorithms.

Nevertheless, it is still important to understand precisely whether
an algorithm can or cannot benefit from ReGraph. To this end, we
list several prerequisites. Formally, our method is applicable if and
only if the graph application can be defined as an iterative graph
applicationGi+1 = f (Gi) (whereGi = (Vi ,Ei) is a data graph) that:
1) has multiple iterations; 2) the size of graph is shrunk after an
iteration, i.e., |Vi | + |Ei | > |Vi+1 | + |Ei+1 |; and 3) the final result is
not changed after shrinking.

1). The alternately-shrink-repartition technique leads to faster
convergence and less computation cost of later supersteps. Obvi-
ously, it works only when the algorithm is iterative, i.e., the algo-
rithm consists of multiple iterations. For example, the TC algorithm
in [27] which always takes only one round could not fit in our work,
thus we optimize an alternative iterative algorithm in Section 5.2.4.

2). The second prerequisite is needed for reducing the overhead
of repartitioning (thus the overhead will not offset its benefits) and
the cost of later computation. Unfortunately, some algorithms don’t
meet this requirement. PageRank is a typical example because it
needs all edges to update every vertex’s state in each superstep so
that the technique doesn’t work for it.

3). The third prerequisite guarantees the correctness of enabling
our technique. If the changes in graph structure of each iteration
don’t affect the final result, the algorithm will always end up with
a correct answer, which can be proved by mathematical induction.
Under this prerequisite, the best approach of shrinking the graph
is to delete as many edges/vertices as possible.

Although the above list of prerequisites seems tight, fortunately,
there are in fact plenty of graph algorithms can benefit from our
framework. The reason is that many graph applications can be
solved by greedy algorithms that can immediately decidewhether
an edge is needed or not with only the local information. That is
to say, this kind of algorithms can make the locally optimal choice
at each stage with only the given sub-graph of each node, and
then the other unneeded vertices/edges can be safely removed for
shrinking the graph. It is easy to see that most of the algorithms
we evaluated (WCC/MIS/MCST) are typically solved by sequen-
tial greedy algorithms. There are also many algorithms that solve
different kinds of applications fit into this category, such as graph
coloring [26], unweighted maximal matchings, maximum weighted
matching, minimum edge cover, minimum cut [18] and so on. An-
other kind of graph applications that can take advantage of our
framework are problems that can be partitioned into a series of
disjoint sub-tasks that each sub-task related to only a sub-graph
of the original graph. For example, the Triangle Counting problem
can be solved by counting triangles related to a small portion of the
vertices (low-degree vertices in our algorithm) in each step, which
shows that the applicability of our method is not even limited by
the applicability of greedy algorithms.

Moreover, to validate that even in the situation that the proposed
technique is not applicable, our work is still meaningful, we imple-
ment the PageRank algorithm provided by Giraph++ in ReGraph,

ReGraph: A Graph Processing Framework that Alternately Shrinks and Repartitions the Graph ICS ’18, June 12–15, 2018, Beijing, China

Table 6: Execution time for PageRank (10 iterations).

Pokec LiveJ Dimacs UK-2002 Twitter
PowerLyra 6.260s 12.18s 37.65s 37.57s 113.8s
Giraph++ 96.43s 264.0s 1128s 1123s 9802s
ReGraph 2.490s 7.331s 30.96s 24.90s 85.66s

Table 7: Code size for five applications (in line).

WCC MIS MCST TC PageRank
TLAV 208 385 1565 678 279
ReGraph 357 295 253 307 168

and compare its performance with TLAV-based and TLASG-based
systems. As Table 6 demonstrates, ReGraph could be as fast as
other works all the time. In fact, it could achieve a small speedup
over TLAV-based system PowerLyra, since local communication is
cheaper. And it’s much faster than Giraph++ because of our C++
and MPI based implementation, though they use the same algo-
rithm. In conclusion, ReGraph provides an alternative to insert
repartition and shrink procedures during processing, as well as
keeps the ability to implement traditional TLASG-based algorithms
efficiently.

5.7.2 Programming Complexity. The fundamental programming
difficulty of the other TLAV/TLASG frameworks is that they need
to coordinate the information of different graph parts that hosted
on different machines. Although a TLASG API enables users to
design smarter algorithms for a single sub-graph, it does not avoid
the complexity of coordinating different sub-graphs that hosted on
different machines. In contrast, our method always scales down the
size of the problem to a single machine. As a result, our algorithms
of solving MIS/MCST/TC are not very different from the single-
machine algorithms, which are much simpler than the parallel
algorithms (e.g., the parallel Boruvka algorithm for solving MCST)
used by the other systems.

To further demonstrate the programming complexity of our
work, we count the code size for each application we implemented
in ReGraph and compare it with the representative TLAV-based
system (PowerLyra or GPS). Although the TLAV model is proved
to be convenient for programming, results in Table 7 show that the
programming model of our framework enables users to implement
their own repartition-centric algorithms very efficiently.

6 RELATEDWORK

Dynamically Capturing the Working Set Dynamically captur-
ing the working set by eliminating parts of the graph that remain
inactive (or that don’t contribute) is a promising direction to re-
duce the scale of the problem and has been explored in [34] by
temporarily not loading the inactive vertices. However, this work
is proposed based on an out-of-core environment that the whole
graph is stored in the local machine, thus it’s quite different with
our work in many important aspects, as demonstrated by Table
8. Moreover, we can combine the methods of these two works for
extending the scope of applications of our framework. This will be
the future work of us.

Besides, a general algorithmic design technique f ilterinд has
been proposed by [18] to solve graph problems in MapReduce,

Table 8: The similarities and distinctions between Dynamic

Partitions [34] and ReGraph.

Dynamic Par-
titions [34]

ReGraph

Dropping edges dynamic dynamic
Reducing computing resources allowed allowed
Re-addition of dropped edges allowed disallowed
Repartitioning not required required
Applicability asynchronous Section 5.7.1
Execution environment out-of-core distributed
Programming model TLAV TLASG

which is similar to our shrink strategy. However, it mainly focuses
on theoretical analysis and algorithms that can be implemented
with only simple distributed Map and Reduce primitives, so its
applicability is much smaller than ours.
Distributed Graph Systems There are many distributed graph
processing systems have been proposed to process large graphs.
Pregel is the earliest system that proposed the TLAV-based model,
which leads to several inherited systems [1, 14, 20, 25, 40]. To over-
come the limitation of TLAV-based frameworks, the TLASG-based
model was proposed by Giraph++, and inherited by some works
[29, 38]. GRAPE [12] is also a parallel graph system but differs from
prior works in its ability to parallelize existing sequential graph al-
gorithms as a whole. Though these systems are different from each
other in terms of programming models or implementations, they
are still different from our work. In ReGraph, repartition proce-
dures can be inserted proactively between iterations to scale down
the problem or re-balance the workload. Moreover, we support
the reduction of cluster size during execution, thus leads to less
resource consumed.

Besides, there are also some existing works [28, 32, 33] are pro-
posed to support dynamic graphs, which is not currently supported
in our framework. But, we think that the principle of frequently
repartitioning the graph to maintain the quality of partition may
be even more important for dynamic graphs. Therefore, this will
be our future work.

7 CONCLUSION

This paper advocates the use of repartition-centric graph algo-
rithms. Through deleting the unnecessary edges, we show that
the increased overhead of proactively repartitioning the graph
can be worthwhile. Moreover, to facilitate the implementation of
repartition-centric graph algorithms, we design and implement
ReGraph, which is a novel graph processing system that provides
a set of Spark-fashion APIs. Our evaluation results demonstrate
that ReGraph requires fewer iterations to converge and hence can
achieve a better performance.

ACKNOWLEDGMENTS

We thank our shepherd Prof. Keval Vora and the anonymous review-
ers for their valuable comments and helpful suggestions. This work
is supported by National Key Research & Development Program
of China (2016YFB1000504), Natural Science Foundation of China
(61433008, 61373145, 61572280, U1435216, 61402198), National Basic
Research (973) Program of China (2014CB340402).

ICS ’18, June 12–15, 2018, Beijing, China Xue Li, Mingxing Zhang, Kang Chen, and Yongwei Wu

REFERENCES

[1] Ching Avery. 2011. Giraph: Large-scale graph processing infrastructure on
hadoop. Proceedings of the Hadoop Summit. Santa Clara 11, 3 (2011), 5–9.

[2] Jonathan W Berry, Bruce Hendrickson, Randall A LaViolette, and Cynthia A
Phillips. 2011. Tolerating the community detection resolution limit with edge
weighting. Physical Review E 83, 5 (2011), 056119.

[3] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. 2004.
UbiCrawler: A Scalable Fully Distributed Web Crawler. Software: Practice &
Experience 34, 8 (2004), 711–726.

[4] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011. Layered
Label Propagation: AMultiResolution Coordinate-Free Ordering for Compressing
Social Networks. In Proceedings of the 20th international conference on World Wide
Web, Sadagopan Srinivasan, Krithi Ramamritham, Arun Kumar, M. P. Ravindra,
Elisa Bertino, and Ravi Kumar (Eds.). ACM, New York, NY, USA, 587–596.

[5] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework I: Com-
pression Techniques. In Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004). ACM, New York, NY, USA, 595–601.

[6] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. 2015. Powerlyra: Differen-
tiated graph computation and partitioning on skewed graphs. In Proceedings of
the Tenth European Conference on Computer Systems. ACM, New York, NY, USA,
1:1–1:15.

[7] Nicos Christofides. 1976. Worst-case analysis of a new heuristic for the travel-
ling salesman problem. Technical Report. Carnegie-Mellon Univ Pittsburgh Pa
Management Sciences Research Group.

[8] Sun Chung and Anne Condon. 1996. Parallel implementation of Bouvka’s mini-
mum spanning tree algorithm. In Proceedings of the 10th International Parallel
Processing Symposium. IEEE, 302–308.

[9] Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Seymour,
and Mihalis Yannakakis. 1994. The complexity of multiterminal cuts. SIAM J.
Comput. 23, 4 (1994), 864–894.

[10] Dimacs. 2005. The Center for Discrete Mathematics and Theoretical Computer
Science. (2005). http://www.dis.uniroma1.it/challenge9/download.shtml

[11] Jean-Pierre Eckmann and Elisha Moses. 2002. Curvature of co-links uncovers
hidden thematic layers in the world wide web. Proceedings of the national academy
of sciences 99, 9 (2002), 5825–5829.

[12] Wenfei Fan, Jingbo Xu, Yinghui Wu, Wenyuan Yu, Jiaxin Jiang, Zeyu Zheng,
Bohan Zhang, Yang Cao, and Chao Tian. 2017. Parallelizing sequential graph com-
putations. In Proceedings of the 2017 ACM International Conference onManagement
of Data. ACM, New York, NY, USA, 495–510.

[13] Harold N Gabow and Robert Endre Tarjan. 1985. A linear-time algorithm for a
special case of disjoint set union. Journal of computer and system sciences 30, 2
(1985), 209–221.

[14] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. Powergraph: distributed graph-parallel computation on natural graphs.
In Proceedings of the 10th USENIX Conference on Operating Systems Design and
Implementation. USENIX Association, Berkeley, CA, USA, 17–30.

[15] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw, Michael J
Franklin, and Ion Stoica. 2014. GraphX: Graph Processing in a Distributed
Dataflow Framework. In Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation. USENIX Association, Berkeley, CA, USA,
599–613.

[16] Joseph B Kruskal. 1956. On the shortest spanning subtree of a graph and the
traveling salesman problem. Proceedings of the American Mathematical society 7,
1 (1956), 48–50.

[17] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is
Twitter, a social network or a news media?. In Proceedings of the 19th international
conference on World wide web. ACM, New York, NY, USA, 591–600.

[18] Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii. 2011.
Filtering: a method for solving graph problems in mapreduce. In Proceedings
of the twenty-third annual ACM symposium on Parallelism in algorithms and
architectures. ACM, New York, NY, USA, 85–94.

[19] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data. (June 2014).

[20] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola,
and Joseph M Hellerstein. 2012. Distributed GraphLab: a framework for machine
learning and data mining in the cloud. Proceedings of the VLDB Endowment 5, 8
(2012), 716–727.

[21] Michael Luby. 1986. A simple parallel algorithm for the maximal independent
set problem. SIAM journal on computing 15, 4 (1986), 1036–1053.

[22] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-
scale graph processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. ACM, New York, NY, USA, 135–146.

[23] Robert Ryan McCune, Tim Weninger, and Greg Madey. 2015. Thinking like a
vertex: a survey of vertex-centric frameworks for large-scale distributed graph
processing. ACM Computing Surveys (CSUR) 48, 2 (2015), 25:1–25:39.

[24] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A lightweight
infrastructure for graph analytics. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles. ACM, New York, NY, USA, 456–471.

[25] Semih Salihoglu and Jennifer Widom. 2013. GPS: a graph processing system.
In Proceedings of the 25th International Conference on Scientific and Statistical
Database Management. ACM, New York, NY, USA, 22:1–22:12.

[26] Semih Salihoglu and Jennifer Widom. 2014. Optimizing graph algorithms on
pregel-like systems. Proceedings of the VLDB Endowment 7, 7 (2014), 577–588.

[27] Thomas Schank. 2007. Algorithmic aspects of triangle-based network analysis.
Phd in computer science, University Karlsruhe 3 (2007).

[28] Xiaogang Shi, Bin Cui, Yingxia Shao, and Yunhai Tong. 2016. Tornado: A system
for real-time iterative analysis over evolving data. In Proceedings of the 2016
International Conference on Management of Data. ACM, New York, NY, USA,
417–430.

[29] Yogesh Simmhan, Alok Kumbhare, Charith Wickramaarachchi, Soonil Nagarkar,
Santosh Ravi, Cauligi Raghavendra, and Viktor Prasanna. 2014. Goffish: A sub-
graph centric framework for large-scale graph analytics. In European Conference
on Parallel Processing. Springer International Publishing, Cham, 451–462.

[30] Kenneth J Supowit, David A Plaisted, and EdwardMReingold. 1980. Heuristics for
weighted perfect matching. In Proceedings of the twelfth annual ACM symposium
on Theory of computing. ACM, New York, NY, USA, 398–419.

[31] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda, and
John McPherson. 2013. From think like a vertex to think like a graph. Proceedings
of the VLDB Endowment 7, 3 (2013), 193–204.

[32] Keval Vora, Rajiv Gupta, and Guoqing Xu. 2016. Synergistic analysis of evolving
graphs. ACM Transactions on Architecture and Code Optimization 13, 4 (2016), 32.

[33] Keval Vora, Rajiv Gupta, and Guoqing Xu. 2017. Kickstarter: Fast and accurate
computations on streaming graphs via trimmed approximations. In Proceedings of
the Twenty-Second International Conference on Architectural Support for Program-
ming Languages and Operating Systems. ACM, New York, NY, USA, 237–251.

[34] Keval Vora, Guoqing (Harry) Xu, and Rajiv Gupta. 2016. Load the Edges You
Need: A Generic I/O Optimization for Disk-based Graph Processing. In USENIX
Annual Technical Conference. USENIX Association, Berkeley, CA, USA, 507–522.

[35] Duncan J Watts and Steven H Strogatz. 1998. Collective dynamics of small-world
networks. nature 393, 6684 (1998), 440.

[36] Howard T Welser, Eric Gleave, Danyel Fisher, and Marc Smith. 2007. Visualizing
the signatures of social roles in online discussion groups. Journal of social
structure 8, 2 (2007), 1–32.

[37] Reynold Xin and Josh Rosen. 2015. Project Tungsten: Bringing Apache Spark
Closer to Bare Metal. (2015). https://databricks.com/blog/2015/04/28.

[38] Da Yan, James Cheng, Yi Lu, and Wilfred Ng. 2014. Blogel: A block-centric
framework for distributed computation on real-world graphs. Proceedings of the
VLDB Endowment 7, 14 (2014), 1981–1992.

[39] Mingxing Zhang, YongweiWu, Youwei Zhuo, Xuehai Qian, Chengying Huan, and
Kang Chen. 2018. Wonderland: A Novel Abstraction-Based Out-Of-Core Graph
Processing System. In Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating Systems. ACM,
New York, NY, USA, 608–621.

[40] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini:
A Computation-Centric Distributed Graph Processing System. In Proceedings of
the 12th USENIX Conference on Operating Systems Design and Implementation.
USENIX Association, Berkeley, CA, USA, 301–316.

http://www.dis.uniroma1.it/challenge9/download.shtml
http://snap.stanford.edu/data
https://databricks.com/blog/2015/04/28

	Abstract
	1 Introduction
	1.1 From Vertex to Graph
	1.2 Proactively Repartition
	1.3 Our Contribution

	2 Background
	3 Motivating Example
	3.1 TLAV and TLASG Based Algorithms
	3.2 Repartition-centric Algorithm
	3.3 Partitioning Algorithm
	3.4 Micro Benchmark

	4 ReGraph
	4.1 Overview
	4.2 Data Model
	4.3 Programming Model
	4.4 Example

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Applications
	5.3 Overall Performance
	5.4 Total CPU Execution Time
	5.5 Time Breakdown and Scalability
	5.6 Implementation in Spark
	5.7 Discussion

	6 Related work
	7 Conclusion
	Acknowledgments
	References

