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Abstract—Remote Direct Memory Access (RDMA) devices are widely deployed in modern data centers. However, existing RDMA
usages lead to a dilemma between performance and redesign cost. Server-reply mode directly replaces socket-based send/receive
primitives with corresponding RDMA counterparts. It can not fully harness the power of RDMA devices. Server-bypass is distinct mode
provided by RDMA for reaching the hardware limits. This mode can totally bypass the server by using one-sided RDMA operations but

at the cost of redesigning software.

This paper provides a different approach, called RF-RPC (Remote Fetching RPC Paradigm). Different from server-reply, RF-RPC
makes client fetch the results from server using one-sided RDMA instead of waiting the results pushed by server. Different from
server-bypass, RF-RPC demands server to process client’s requests for supporting programming paradigm like RPC. Thus, RF-RPC
can achieve high performance without abandoning traditional programming models. An RF-RPC supported in-memory key-value store
shows that the performance can be improved by 1.6 x comparing to server-reply paradigm and 4 x comparing to server-bypass

paradigm.

Index Terms—RDMA, RPC, key-value database, distributed systems.

1 INTRODUCTION

DMA offers features like low-latency, high-bandwidth,

and server-bypassing. RDMA has been widely de-
ployed in modern data centers [2], [3], [4], [5], [6], [7],
[8], [9], [10]. Infiniband, RoCE/RoCEv2 (RDMA over Con-
verged Ethernet), and iWARP (Internet Wide-area RDMA
Protocol) are different network protocols which implement
RDMA technique. Infiniband is the most commonly used
Infiniband-based RDMA protocol which needs special In-
finiband NIC and switches supporting. RoCE [11]/Ro-
CEv2 [12] and iWRAP [13] base on Ethernet and can run
over RDMA-support Ethernet NIC, but also lost some criti-
cal pieces of the Infiniband and can only be treated as an al-
ternative to InfiniBand. Compared with iWARP, RoCE/Ro-
CEv2 is the only industry-standard Ethernet-based RDMA
solution with a multi-vendor ecosystem delivering [13].

A common usage of RDMA, denoted as server-reply, is
to replace original TCP/IP socket send/receive primitives
with the corresponding RDMA counterparts. Through this
way, the same RPC interfaces can be implemented [4], [7],
[8], [14], [15], [16], [17]. It can boost the performance without
much efforts of re-programming, e.g.,, RDMA-Memcached
[7] has applied this approach and boosted the performance
Memcached [18] by 4x comparing with using TCP/IP.

However, server-reply does not really unleash all the
power of RDMA. The iconic feature of RDMA is one-sided
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operations that can totally bypass CPU and OS on remote
machines. This gives clients the ability of accessing server
memory directly. We call this as server-bypass [2]. Previous
works such as Pilaf [2] and FaRM [3] all have embraced
server-bypass. They show that that server-bypass can be faster
than server-reply by as much as 100% [2], [3], [5], [19].

Despite the performance gain, server-bypass needs devel-
opers to redesign the software such as using RDMA friendly
data structures and algorithms because the remote CPU is
bypassed and not processes the requests. For instance, Pilaf
[2] (a key-value store) uses CRC64 for data race detection
among GET from clients (using server-bypass) and PUT on
server (using server-reply), while it also designs a specific
hash-table to reduce the number of RDMA operations for
completing GET requests. This becomes a dilemma between
redesign cost and performance. More importantly, these
special data structures are usually application-specific. For
example, a data structure designed for serving GET/PUT
operations on a key-value store cannot be used for other ap-
plications, such as those with simple statistic operations [5].

To solve this dilemma, we propose a new RDMA-based
RPC paradigm called Remote Fetching RPC Paradigm (RF-
RPC). In RF-RPC, the server processes the requests sent
from clients, so that its CPU usage is similar to that with
traditional RPC interfaces. As a result, applications that use
traditional RPC can remain largely unchanged. Meanwhile,
RE-RPC achieves higher performance than both server-reply
and server-bypass, which comes from two design choices. The
first is releasing the server CPU from processing network
operations, similar to server-bypass. The second is avoiding
bypass access amplification that limits the usage of server-
bypass supporting traditional RPC based applications.

The performance boosting of releasing server CPU from
processing network operations comes from the differences
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between in-bound and out-bound RDMA operations. Serv-
ing a one-sided RDMA operation, e.g., server gets a request
from client, is called as in-bound operation. Issuing a one-
sided RDMA operation, e.g., server sends a response back
to client, is called as out-bound operation. It is obvious that
in-bound operation requires no CPU involvement while out-
bound operation does. As mentioned in Cell [20], out-bound
RDMA operations in server side are more expensive than in-
bound RDMA operations especially in a typical scene like
one server serving many clients. For the out-bound RDMA
operations, server CPU needs to involve every network
operation for response sent back to clients. Since the server
CPU will often become a bottleneck, we need to change the
out-bound operations to in-bound operations on the server
side. In fact, as we will see in the experimental results,
a significant improvement can be gotten using in-bound
RDMA operations instead of using out-bound RDMA oper-
ations on the server side. This also explains why server-reply
mode is sub-optimal since it always uses out-bound RDMA
operations on the RPC server.

Bypassing access amplification is a phenomenon related
to the programming paradigm of server-bypass. Such phe-
nomenon often leads to a significant gap between expected
performance and measured performance of server-bypass.
The expected performance corresponds to the ideal case
where only one RDMA operation is required to complete
a request but usually not true in reality. Since ‘NO’ CPU
processing is on server, multiple clients need to coordinate
their access to avoid data access conflict. It will lead to more
RDMA operations i.e., more network rounds. Moreover,
additional RDMA operations might be needed for meta-data
probing to find where the data are on server memory. Thus,
the measured performance of server-bypass is typically much
lower than the expected. For example, Pilaf uses 3.2 RDMA
operations for each GET request on average even with read-
intensive workloads. The performance is even worse when
conflicts are heavy (e.g., with write-intensive workloads)
[21], [22], [23].

Based on the above observations and analysis, RF-RPC
makes two important design decisions. First, to alleviate
the constraint of out-bound operations, server buffers the
results in its local memory instead of sending results back
to clients through out-bound RDMA operations. And then,
clients use RDMA_Read to fetch these results remotely, so
that the server only handles in-bound RDMA i.e. server
CPU is released from network operations. This way lever-
ages the in-bound RDMA performance of the server’s RNIC
(RDMA NIC) by offloading the result-transferring respon-
sibility from server to client. Second, RF-RPC requires the
server to be responsible for processing the incoming re-
quests. This way not only avoids performance degradation
due to bypass access amplification, but also avoids the need
of redesigning application architecture for fitting RDMA.

In addition to the above design decisions, to improve
the performance further, RF-RPC uses batch to boost the
performance of applications requiring large amount of RPC
operations in parallel. Usually, each RPC invoke needs to
get its response before sending the next one. This can
mimic the local procedure call. However, due to the network
overhead, current RPC systems often support invoking of
multiple simultaneous RPC calls. Similar things happen in

TABLE 1
Design paradigms based on all possible design choices for applying
RDMA (from the server’s perspective).

Request Send Request Process Result Return
Server-reply In-bound RDMA | Server involved | Out-bound RDMA
Server-bypass | In-bound RDMA | Server bypassed In-bound RDMA
RF-RPC In-bound RDMA | Server involved In-bound RDMA
Meaningless In-bound RDMA | Server bypassed | Out-bound RDMA

the multiple threading environment. Batching multiple RPC
calls can benefit such applications.

To demonstrate the effectiveness of RF-RPC, we de-
signed and implemented an in-memory key-value store us-
ing such paradigm. Experimental results show that RF-RPC
improves the throughput' by 1.6x compared with server-
reply and 4x compared with server-bypass under different
workloads. Moreover, batching in RF-RPC can greatly im-
prove the throughput by 11.4x. However, the improvement
of batching is not a free lunch as it is well-known that the
latency of a request will also increase when more messages
are required to be batched. To mitigate this problem, a tun-
ing mechanism is provided that can automatically choose
a proper batch size. It can guarantee that the latency of
most requests (> 95%) be kept lower than a user-defined
threshold while still achieve the best throughput.

The remainder of this paper is organized as follows.
Section 2 discusses the design choices of RF-RPC and give
the detailed analysis. Section 3 presents Remote Fetching
RPC Paradigm (RF-RPC) based on design choices and gives
solutions to challenges over RF-RPC. Section 4 describes
how to apply batching technical over RF-RPC and the
challenges to tune RF-RPC through the batch size. Section 5
depicts the evaluations. Section 6 shows the related works,
and finally Section 7 draws concludes.

2 DESIGN CHOICES AND OBSERVATIONS

In this section, we will discuss the design choices for sup-
porting RPC using RDMA. And also we give the detail
analysis leading to the design of RF-RPC.

2.1 Design Choices for RDMA-Based RPC

As one of the most prevalently used communication mech-
anisms in distributed applications programming, RPC is
well known for hiding the complexity of message-based
communication for upper layer applications [8], [22], [23],
[24]. There are many variations and subtleties in the imple-
mentation of RPC, which results in a variety of different
(incompatible) RPC mechanisms. However, a typical RPC
call consists of three steps: (1) Request Send step: client sends
the function call identity as well as parameters to server; (2)
Request Process step: the requests are processed and results
are generated on server; (3) Result Return step: where the
results are transferred to client [25], [26].

Table 1 illustrates the design choices for each step in
an RPC call with RDMA. For Step 1, as server does not
know when client may invoke an RPC call, the only choice
is that client uses out-bound RDMA operations to send

1. Throughput: the number of requests completed per second.
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the request to server. In this case, server always uses in-
bound RDMA operations. Step 2 has two choices according
to whether server is involved in processing the request.
Porting cost is lower if server is involved. Server-reply fol-
lows this paradigm. Server-bypass does not require server
to process the requests and hence reduces CPU utilization
on the server. The cost is that special data structures are
needed for each different application to coordinate the
concurrent accesses from multiple clients. Step 3 also has
two choices for transferring data from server to client. Server
can directly send the result to client by issuing out-bound
RDMA operations from server, or client can fetch the result
from server’s memory through RDMA-read (i.e., in-bound
RDMA to server), which are adopted by server-reply and
server-bypass, respectively. For completeness, Table 1 lists all
possible design choices, one of which is meaningless, i.e.,
server does not process requests but sends results using out-
bound RDMA.

2.2 Reduce Network Overhead of Server Side

Previous sections have already mentioned and made some
analysis of using in-bound RDMA to replace out-bound
RDMA on the server side. We also have written some
micro benchmarks to quantify such improvement. Eight
machines are used and the details are in Section 5. One
machine act as server and others are clients. This is the
typical settings of one server serving multiple clients. We
measure the IOPS of issuing out-bound RDMA operations
(i.e., issuing RDMA_Write to clients) and serving in-bound
RDMA operations (i.e., receiving RDMA_Read from clients)
on the server machine. The out-bound IOPS is tested by
letting server continuously issue RDMA_Write operations
to other clients. Each server thread randomly chooses a
client machine, and issues an RDMA_Write operation to
its memory, and repeats this operation after the current
one is completed. Similarly, the in-bound IOPS is tested
by letting clients issue RDMA_Read operations to server.
Memory buffers for client threads and server threads are
independent and do not interference with each other. For
both tests, we launch four threads on each client machine to
saturate the server’s RNIC.

In order to simulate the typical work-flow of issuing RPC
requests, rather than issuing asynchronous RPC requests,
we always wait for an RDMA operation’s completion be-
fore starting the next operation. In other words, different
threads may issue RDMA operations concurrently, but at
most one operation is processed by each thread. This is the
traditional way of doing RPC request and response. This
can be improved by using better implementation as well as
batching. We will defer these discussions later in the sections
discussing batching and experiments.

We measure the peak IOPS of in-bound operation
(11.26MOPS) is about 5x higher than that of out-bound
(2.11 MOPS) as shown in Fig. 1. This study also verifies
that although server-reply provides good programmability,
it suffers from low performance (at most 2.1 MOPS) as its
IOPS is limited by the out-bound RDMA IOPS of the server.
The extra CPU involvement during out-bound network
operation does influence the server performance. Such a
performance gap between in-bound and out-bound oper-
ation will become more severe when using relatively higher

In-bound RDMA —>—
Out-bound RDMA ——
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Fig. 1. The IOPS of out-bound RDMA and in-bound RDMA under
different size.
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Fig. 2. The throughput declines in server-bypass when more RDMA
operations are needed to achieve a single client request.

performance RDMA RNICs connected to relative lower
performance CPUs.

One can notice that when the data size is larger than
2 KB, in-bound RDMA and out-bound RDMA perform as
same in IOPS. This is because the bandwidth becomes the
bottleneck in this case. In contrast, when data size is less
than 2 KB, in-bound RDMA significantly outperforms out-
bound RDMA in IOPS.

2.3 Bypass Access Amplification

Server-bypass allows clients to directly read/write server’s
memory through one-sided RDMA operations without in-
volving CPU processing on server. This has been consid-
ered a promising approach for building high performance
applications with RDMA [2], [3], [5], [19]. However, as
CPU processing is bypassed, the application has to rely on
specific design of data structures and algorithms to do the
coordination among multiple clients. This is because they
may access the same memory region which leads to data
race. Such programming paradigm is quite different from
the traditional way of using RPC. The support for legacy
RPC applications is therefore poor. The programming is also
not easy.

Moreover, server-bypass in many cases cannot achieve
good performance as expected. This is because usually
multiple RDMA operations are required to complete a single
request. Take Pilaf as an example, even with a 75%-filled
3-way Cuckoo hash table, a client in Pilaf has to spend
3.2 RDMA-read operations on average including metadata
probing (find where the key-value pair is stored in server)
and data transferring for completing a key-value GET [2].
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TABLE 2
The basic APIs provided by RF-RPC for implementing RPC. All local_bufs are allocated with malloc_buf. Messages are directly put into these
buffers for transferring through RDMA.

APIs

Description

client_send(server_id,local_buf,size)

client sends message (kept in local_buf) to server’s memory through RDMA-write

client_recv(server_id,local_buf)

client remotely fetches message from server’s memory into local_buf through RDMA-read

server_send(client_id,local_buf,size)

server puts message for client into local_buf

server_reco(client_id,local_buf)

server receives message from local_buf

malloc_buf(size)

allocate local buffers that are registered in the RNIC for message transferring through RDMA

free_buf(local_buf)

free local_buf that is allocated with malloc_buf

It slows down the performance boost by RDMA. Even
worse, without server involved in request processing, clients
have to use more RDMA operations to resolve conflicts
themselves in a request. As illustrated in Fig. 2%, when
conflicts are heavy with write-intensive workloads [21], [22],
[23], the throughput even decreases to below 1 MOPS due
to an increasing number of RDMA operations involved.
This significantly curbs the usage of server-bypass for a wide
range of applications.

RF-RPC tries to avoid server-bypass model but still stick
to the direct memory access capabilities provided by RDMA
network operations. By using server CPU for doing request
processing, the conflicts among clients can be eliminated.

2.4 Batching over RDMA

Batching is a popular technique that works by coalescing
multiple messages into one bundle and sending this bundle
at once. It is well-known that, if the messages sent by a
machine is dominated by small messages, batch technology
can greatly improve the overall throughput. According to
recent investigations [27], [28], [29], a larger batch size
will usually lead to higher throughput, until reaching the
bandwidth limit of the underlying network devices. Besides,
the latency® of RDMA operation will slowly increase at the
beginning, which is also observed by other researchers [30],
[31], [32]. RDMA /InfiniBand environment is more insensi-
tive than the traditional Ethernet network. The latency of
RDMA_Write increases from 1.12 ps to 2.04 ps when size is
increased from 8 bytes to 256 bytes.

Therefore, batch over RDMA will benefit the over-
all throughput without increasing latency too much. This
mechanism is particularly useful for applications requiring
a large amount of small messages transfer over the high-
speed network such as InfiniBand. For example, Koop M J,
et al. [28] have tried to apply batch in RDMA-based MPI
applications. Through merging multiple MPI operations
upon RNIC into one operation, they achieved nearly 3.1x
higher throughput in the best case.

But, as we have mentioned in Section 4, the improve-
ment from batch is not a free lunch. Typically, the higher
throughput obtained by raising the batch size is achieved
with the cost of higher latency. This may not be acceptable
for certain kinds of systems. As the result, the designer of

2. Tested with 21 client threads connecting to a single server.

3. The latency means access the corresponding amount of data. The
write latency is defined as the time for writing the data totally to the
destination. This is different from the definition of network latency.
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Fig. 3. The overview of RF-RPC.

transmission systems must make trade-off between latency
and throughput.

Fortunately, according to our evaluation (details in
Section 4), RF-RPC has a lower latency than previous
paradigms. This gives more rooms for adding the batch
mechanism in such a paradigm without hurting latency too
much. Moreover, as we will discuss in Section 4.2, although
RF-RPC cannot get the higher throughput and lower latency
at the same time, we have developed an automatic tuning
mechanism to achieve a better balance. This mechanism can
automatically choose the proper batch size that 1) lead to
a near-best throughput. And at the same time, it 2) makes
sure that the latencies of most messages are less than an
user-defined upper bound.

3 RF-RPC: REMOTE FETCHING RPC PARADIGM

Based on the design choices we discussed above, this section
presents the design of Remote Fetching RPC Paradigm
(RF-RPC), a new RDMA-based RPC paradigm that pro-
vides traditional RPC interfaces (therefore be friendly to
legacy applications) as well as higher performance than
both server-reply and server-bypass. First, server should pro-
cess the request rather than totally bypassed, so that no
application-specific data structure or redesign is needed.
Second, results should be remotely fetched by the client
through RDMA_Read instead of being sent by server, hence
the server only handles in-bound RDMA operations.

3.1 Design Overview

As listed in Table 2, RF-RPC provides an interface that con-
tains four basic APIs, i.e., client_send, client_recv, server_send,
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and server_recv, which is similar to the interface provided
by TCP/IP socket. Therefore, RPC mechanisms can be built
on top of RF-RPC by simply replacing the original TCP/IP
socket interfaces with ours, which is straightforward [8],
[25], [26]. As we will discuss later in Section 3.2, there are
several parameters should be manually set before using RF-
RPC. But, since RF-RPC makes the server to handle requests
sent from clients, it does not rely on application-specific data
structures and hence imposes only moderate porting cost.

Fig. 3 illustrates how to use RF-RPC. At the bottom
of the figure, clients use client_send to send their requests
to server’s memory through RDMA_Write and server uses
server_recv to get requests from local memory buffers and
then process these requests, which is the same as server-
reply. However, unlike the case with server-reply, server does
not send results back to clients directly after it processes the
requests. Instead, server_send called by server only writes
results into local memory buffers, and it is clients’ re-
sponsibility to use client_recv to remotely fetch results from
server’s memory through in-bound RDMA_Read.

In summary, RF-RPC combines the strength of the other
two paradigms, while it also avoids their weakness. Firstly,
RF-RPC relies on server to process the requests, which
1) avoids the need of designing application-specific data
structures, which means that it can be used to adapt many
legacy applications with only moderate programming cost;
2) also solves the bypass access amplification problem that
we have described in Section 2.3.

Fig. 4 gives an example of using RF-RPC and server-
bypass to implement key-value store’s GET operation. From
Fig. 4(b) we see that server-bypass involves more steps: it
requires clients to probe meta-data (line 3), fetch data from
server (line 5), and check data correctness and integrity
through checksum (line 6). Clients have to retry if they
find the data is being modified by server, or if there is a
key conflict (line 10). In contrast, as shown in Fig. 4(a),
RF-RPC just needs clients to send requests and receive
results (lines 3~4), which is compatible with server-reply.
More importantly, the complexity of using server-bypass is
not only embodied by the number of steps required. The
above special GET procedure is specifically designed for this
certain purpose and hence cannot be used in other kinds of
application.

Despite the compatibility with traditional RPC, RF-RPC
also does not waste server CPU cycles on network op-
erations for sending results, which is different from the
traditional wisdom. Instead, server only writes the results
into local response buffers, but asks clients to remotely
fetch the results. This eliminates the bottleneck of using out-
bound RDMA operations at server side, which brings higher
performance than the other two paradigms.

Since RDMA requires memory blocks to be registered to
RNIC before using them, RF-RPC provides two APIs, mal-
loc_buf and free_buf (see Table 2), to allocate and free buffers
registered to RNIC automatically. Clients and server put
messages directly into request/response memory buffers
allocated from malloc_buf. The corresponding location infor-
mation for request/response buffers are recorded by both
the server and the client when client registers itself to the
server. Thus, both the server and clients can directly read-
/write their exclusive buffers without the need of further

1 int GET(int server_id, void *key, int key_size, void *value_buf){
2 r_buf=prepare_request(key, key_size, GET_MODE);

3 client_send(s_id, r_buf, sizeof(r_buf));

4 size=client_recv(s_id, value_buf);

5 return size;

6} 7

(a) Using RF-RPC

1 int GET(int server_id, void *key, int key_size, void *data_buf){
2 while(true){

3 md=probe_metadata(server_id);

4 while(true){

5 data=get_data(s_id, md, data_buf);

6 if checksum of data_buf is ok:

7 break;

8 }

9 get key_size’ and value_size;

10 if equal(key, key_size, data_buf, key_size’)
11 break;

12 3}
13  return value_size;
14} 7

(b) Using Server-Bypass

Fig. 4. How RF-RPC and server-bypass implement GET for in-memory
key-value stores at client side.

synchronizations. As shown in Fig. 3, each buffer has a
header to denote the status (whether the request/response
has arrived) and its size. Moreover, in each response buffer,
the header also contains a two-byte variable time to keep the
response time of server for the corresponding request. This
field is used by clients to better setup the parameters for
the RF-RPC primitives, which will be discussed in the next
section.

3.2 Challenges and Solutions

To maximize the throughput of applications, RF-RPC faces
two challenges: 1) when clients should fetch the results
from server to reduce unnecessary RDMA operations; and
2) what default size clients should use to fetch the results
so that in most cases only one RDMA_Read operation is
required.

In our implementation, each of these two challenges is
equalized to a parameter selection problem. Thus, in the rest
of this section, we first show how these two challenges are
transferred into parameter selection problems, and then we
present our mechanism to select the optimum parameters.

For the first challenge, a straw-man design is repeatedly
fetching results from server’s response buffers in client_recv,
i.e.,, without any interval between two retries. A similar
method is used in the server side, i.e., the server will re-
peatedly check its request buffer for fetching new requests.
It is obvious that this method can be used to achieve the best
latency. However, different from the server that we assume
it should spend all its CPU cycles in request processing,
clients may have other responsibilities such as interacting
with the user. As a result, this simple straw-man design
may not be optimal as it leads to higher CPU consumption
at client side and waste server’s in-bound IOPS, especially
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Fig. 5. The throughput difference between repeated remote fetching and
server-reply under different server process time (P). F' and S are all 1
byte for this test.

when the average number of retries is large. RF-RPC there-
fore uses a hybrid mechanism to achieve a good trade-off
among latency, throughput, and clients” CPU consumption.
The mechanism starts from using repeated remote fetching
and then automatically switches to server-reply if it detects
the number of retires is larger than a certain threshold R.
When the number of retries is less than (or equal to) R,
RE-RPC uses repeated remote fetching to provide higher
throughput and lower latency. Otherwise, repeated remote
fetching brings little throughput improvement compared
with server-reply, and RF-RPC switches to server-reply to save
CPU consumption of clients. It is the parameter for the first
challenge and its selection will be discussed later.

For the second challenge, different RPC calls generate
different size of results and it is impossible to generally
predict the size beforehand. RF-RPC asks server to fill a
result size of every RPC call in its response memory buffers
for clients to fetch, as shown in Fig. 3. However, it is
expensive if a separated RDMA_Read is always needed to
fetch the result size before getting the data, which wastes
half of the RNIC'’s IOPS resource. To mitigate this problem,
we store the result continuously after the header in the
response buffer, and we set a default fetching size (denoted
as I") for each client. A client will fetch both the response
header and the payload data from server’s memory with
one RDMA operation when F' is not less than the total
response size.Only if the real result size is larger than
the fetching size, does the client need to issue another
RDMA_Read to fetch the remaining data. This mechanism
greatly reduces the average number of RDMA operations
used for an RPC call, especially when the size of result is
usually small. F' is the parameter for the second challenge.
Parameter Selection. With R and F, we model the two
challenges together as a parameter selection problem: The
selection of R and F' plays an important role on the through-
put for upper-layer applications. In RF-RPC, the throughput
T is determined by the following form:

T = argmax f(R, F, P, S) (1)
R,F

As we can see from the equation, the throughput (T') of
an RF-RPC application is related to four factors:

e IR - the retrying number of RDMA_Read from clients
before it switches to server-reply mode;

e I - the fetching size used by the clients to read
remote results from server;

e P - the process time for requests on server;
e S -the RPC call result sizes.

Among these factors, P and S are related to applications
only, while R and [’ are related to both applications and
the RDMA hardware. We therefore start by understanding
how R and F are related to the given hardware capabilities.
Later on, we discuss how to determine the best R and F
so as to achieve great application throughput by connecting
them with P and S, i.e., application characteristics.

For designing a mechanism that can automatically
choose the best R and F' for an application, we investigate
the impact of modulating these two parameters separately
and observe that it is complicated to use an equation to
describe their relations and hence, it is hard to directly
calculate the optimum results. However, an enumeration-
based method is enough to solve the optimization problem,
as, surprisingly, we find that the possible range of optimum
R and I is limited.

First, Fig. 5 shows the throughput of repeated remote
fetching and server-reply when the server process time of the
requests varies, with both F' and S setting to 1 byte so that
only one RDMA_Read operation is required for fetching the
result. The throughput (MOPS) is therefore the upper-bound
of T for every P, no matter how F' and S change. This is
because: (i). making F' and S not equal to each other leads to
either additional RDMA operations required (when F' < S),
or no benefit at all but only bandwidth waste (when F' > S);
(ii). when F' (and S) increases, throughput will only drop.

Given this upper-bound curve over P for all possible F'
and S, we can have an upper bound of R, i.e., R should
be within [1,N], where N is the upper-bound number of
RDMA_Read retries. If R > N, the throughput improvement
of repeated remote fetching is limited while it consumes
more clients” CPU resources than server-reply. The setting of
N depends on the hardware configurations (similar to Fig.
5) as well as developers’ inputs about their expectations
on trade-off between throughput improvement and CPU
consumption of clients. In this case, we choose N to be 5,
which is mapped to the point whose P is 7, according to
the curve above. This is because the throughput of repeated
remote fetching is not significantly larger than server-reply
when P > Tus (within 10%), while the client may spend
more than twice the CPU consumption.

Second, Fig. 1 presents the IOPS of RNIC under different
data size. The curve in the figure, presenting the relationship
between IOPS and data size, can be divided into three
ranges: [1,L), [L,H], and (H,00). Data size smaller than L
(in the first range) does not increase the throughput, due to
the startup overhead of data transmission in the RNIC. Data
size larger than H also does not increase the throughput, as
bandwidth becomes bottleneck at this time and throughout
decreases linearly with the size increasing. L and H rely
on hardware configuration, and can be gotten by running
benchmark once (similar to Fig. 1). For example, in our
RNIC (InfiniBand) configurations, L is 256 bytes and H is
1024 bytes.

Based on the above observations, the selection of R and
F is limited in [1, N] and [L, H] respectively, which means
that only (H — L) * N pairs of candidates are needed to be
considered. More importantly, both NV and H — L are small
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enough for an simple enumeration. As a result, RF-RPC uses
an enumeration-based method to decide best R and F’, in
which the following equation is used for comparison:

M
— X L IR,F F Z Sz
T—ZlTZ, whereﬂ_{ Iny/2 F <8, )

Specifically, for each result of an application, RF-RPC

calculates the throughput for it (73). The calculation of T;
depends on the fetching size (F'), the result size (5;), and
the IOPS of the RNIC under R and F' (Ig,r): if F' > S;, T} is
Ig F; if F' < S;, T; is half of Ir r as two RDMA operations
are used to fetch the whole result. Iy f is tested by running
benchmarks only once. RF-RPC enumerates all possible
candidates, and chooses the F' and R that maximize the
throughput (T') for all M results as the optimum parameters
for the application. The M results of the application can be
collected by pre-running it for a certain time or sampling
periodically during its run. The selection complexity is
O((H—-L)NM).
Optimization. In order to further improve the performance
of RF-RPC, we also apply to more optimizations. First, we
use inlining to reduce latency. When the payload of an
RDMA_Send or RDMA_Write is smaller than 92 bytes, this
payload can be inlined into the request that notifies the
RNIC about this RDMA operation. Otherwise, if inline is not
enabled, RNIC needs to use one more DMA (Direct Memory
Access) read to fetch the payload. Usually, this technique
is most effective when the payload and the corresponding
header can fit into one or two cache lines, and this is why
we use 92 bytes as the threshold.

Moreover, we also take advantage from the “unsignal”
operations provided by RNIC. Typically, when a “signaled”
RDMA operation is completed, a corresponding completion
event will be pushed into the completion queue (CQ). CPU
needs to poll this CQ for being noticed of this completion,
which will bring extra overhead. In contrast, “unsignal”
operations allow users to issue RDMA operations without
waiting for its completion event, and hence can largely
improve the performance. But, without signal, CPU cannot
synchronize with RNIC exactly, thus we need to issue one
signal RDMA operation after several unsignal RDMA oper-
ations to make sure that all these operations are completed.
Discussion. There are two more details for implementing
the hybrid mechanism to switch between repeated remote
fetching and server-reply. First, both client and server main-
tain a mode_flag for each pair of (client_id, RPC_id), which
designates the current paradigm in usage. This flag can only
be modified by the corresponding client (by a local write
to the local flag and an RDMA_Write to server’s flag), and
server gets to know the current paradigm by checking its
local mode_flag. Initially, the flag is set to repeated remote
fetching and hence client will continuously fetch results
from server. If the number of failed retries becomes larger
than R, client will update the mode_flag (both local and
remote) to server-reply and switch itself to server-reply, i.e.,
waiting until the result is sent from server. In contrast,
if client is currently in server-reply, it will record the last
response time and switch back to repeated remote fetching
if it finds the response time becomes shorter. RF-RPC records
the response time for completing the request in the header
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of the response buffer (see Fig. 3), which will be gotten by
client through RDMA_Read.

Second, some requests with unexpectedly long server
process time may cause unnecessary switch between re-
peated remote fetching and server-reply. To avoid this phe-
nomenon, RF-RPC only switches to server-reply if it finds a
pre-defined number (e.g., two) of continuous RPC calls suf-
fer from 5 failed retries of remote fetching. Otherwise, RF-
RPC remains in repeated remote fetching mode. According
to the evaluation in Section 5.3.2, only 0.2% of the requests
have unexpectedly long process time for applications. Thus,
it is quite rare that two (or more) continuous RPC calls suffer
from unexpectedly long process time.

4 BATCHING OVER RF-RPC

According to recent investigations [33], about more than
99% of messages transmitted in real-world data centers are
small packages whose sizes are less than 1KB. Thus, as
we have discussed in Section 2.2, in such an environment
the upper bound of maximum IOPS of an RNIC will be
reached earlier than the upper bound of its bandwidth. As
a result, although our novel RF-RPC model can achieve
a higher IOPS than the traditional server-reply and server-
bypass paradigms, it is still not able to fully utilize the
bandwidth provided by underlying InfiniBand devices.

To mitigate this problem, in this paper, we propose
the usages of batching. Specifically, in Section 4.1, we will
present the method of using buffering to integrate batching
with RF-RPC. Different from server-bypass that totally bypass
the server, RF-RPC involves the server in message handling,
which make this integration quite straightforward. How-
ever, although RF-RPC can also achieve a better latency than
server-reply and server-bypass, it is not free from the trade-off
between higher throughput and lower latency. To ease the
users’ overhead of manually modulating the batch size, in
Section 4.2, we will discuss the design of an automatic pa-
rameter tuning mechanism, which can calculate the proper
batch size by giving only a pre-defined upper bound of
latency.

4.1 Design Details of Batching

Batch Format Fig. 6 presents the format of the request batch
and the result batch, respectively. As we can see from the
figure, every single request/result is considered as an entry
of the batch and is stored immediately after a 32-bit integer
that describes its size. Besides the payload, both the request
and result batches have a header that consists of 1) a single
status bit; 2) a 31-bit integer that is the size of the whole
payload; 3) an auxiliary field. The usage of the auxiliary field
in response batch’s header is already discussed in Section
3.2. In contrast, the auxiliary field in request batch’s header
is unique in the batch mode, it is used for automatic batch-
size modulating that we will describe in the next subsection.
Moreover, there is one more status bit in the tail of a request
batch. These meta-data are used for making sure that the
server/client is able to decide whether the request/result
batch it received/fetched is complete or not, whose usages
will be discussed in the rest of this section.

Sending a Request Batch For using the batching mech-
anism, users can define a size limit L (typically set to
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Fig. 6. Design of batching packet which includes request batch and
response batch.

2048 bytes), a time-out threshold 7', and a number NV that
indicates the maximum number of entries in a batch. With
these parameters, the clients will first buffer the requests
and only send them in a batch when 1) there are already N
requests buffered; 2) the payload of the batch exceeds L; or
3) there is no more request after passing 7' seconds. We set
the timeout threshold 7" as 5 ms in our evaluations.

The above procedures are similar to existing ones used

in other paradigms. But, in RF-RPC, requests are sent to
the server via one-sided RDMA_Write operations by the
clients, which bypasses the server’s CPU. As a result, we
need to design a mechanism that enables the server to check
whether a batch of request is sent and, more importantly,
whether the received batch is completed. To provide this
capability, we reserve two status bits in both the front and
the tail of the request batch. Initially, the server will clear
its local buffer so that both these two bits are zero in the
server side. After the client prepared a full batch, it set both
of these two bits to one and send them to the server. Since
the RDMA_Write operation is guaranteed to write the data
in a sequential order [3], [34], the server can be aware the
batch sending is started after the first status bit of its local
buffer is changed to one, and the completion of this sending
after the tail bit is also changed to one.
Fetching Result Batches After the server receives a com-
plete batch of requests, it can process them with arbitrary
functions as required. The results are first buffered in a result
buffer and fetched back by the clients through one-sided
RDMA_Read operations. Similar to the sending procedure,
we use the status bit to enable clients to check whether it
has successfully fetched a complete result batch or not. The
head bit is first set to zero and only changed to one after the
server has finished writing all the payloads and the other
meta-data fields. As a result, the client should repeat its
remote fetching until this bit is set.

The tail status bit is not used in result batch because the
client can check whether all the sent requests are processed
by counting the number of results returned. This mechanism
enables us to return an arbitrary length result that is not
necessarily equal-size to the request. In other words, for a
single request batch, its results may be split into multiple
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result batches if the result size is larger than the request.
We assure that the payload of each result batch is not larger
than L so that a fixed size buffer is enough.

Large Entry Former discussions focus on small entries
whose size are less than L. In real-world cases, there may
be extreme cases that the size of a single request/response
is larger than L. However, the difference between RF-RPC
and server-reply’s IOPS becomes narrow after the size of each
packet becomes larger than 8192 bytes. Thus, we simply fall
back to server-reply for such extreme cases.

Pipeline To further reduce the latency cost of using batch-
ing, we also enable users to send multiple request batches
without waiting for all the results of the former request
batch is fetched. This pipeline mechanism overlaps the
sending and fetching procedure and hence can reduce the
average latency. Specifically, the client can continuously
send multiple request batches if the number of requests
whose results have not been returned is not larger than a
certain threshold. The implementation of this mechanism
just requires that the server should allocate multiple buffers
in the local for reserving the requests and buffering the
results.

4.2 Batch Size Selection

As we have discussed in Section 2.4, the increasing of
batch size will not only increase the throughput but also
enlarge the latency, which is not desirable by users. This
phenomenon deserves more serious considerations when
batch size is larger.

Although users can modulate the batch size manually, it
is usually a tedious work as the achieved latency depends
on many factors (e.g., the current network situation, the load
of server/client) and hence is unpredictable. More impor-
tantly, a fixed batch size may not always achieve the best
result as the environment and workload are continuously
changing. As a result, we propose an automatic tuning
mechanism for facilitating the usages. With this mechanism,
users only need to specify a threshold of latency [lj;ms
and a certain degree of tolerance «, then the system will
automatically choose a batch size that achieves the best-
possible throughput while, at the same time, assures that
at least 1 — a% of the requests’ latency is lower than lj;;.

Snow — 1, k > Oé%
Snext = { Snow + 1, k<01xa% (3)
Snows other conditions

e Spezt - the recommend batch size for server side;

e Spow - the batch size at present;

e k- the proportion of latency which exceeds the l;;,,;
e liim4t - the limit upper bound latency;

Specifically, the tuning mechanism is implemented by
the following procedures. First, the client should record the
latency of each request it sends, which will be used for
the later calculation. With such information, the client can
track the current status by calculating what proportion of
requests’ latency are higher than the user given threshold
liimat. If the calculation result k is higher than «, the batch
size should be reduced for lowering the average latency,
which is achieved by changing the batch size from 5,0, to
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Snext 1. This new parameter will be stored in
the 16-bit auxiliary field that we have demonstrated in Fig.
6, so that the server can synchronize with client to use the
same batch size. Similarly, if the calculation result & is lower
than 0.1 X ¢, the batch size is enlarged (Spest ‘= Snow + 1)
to obtain a better throughput. The reason why we use a
fixed step 1 is because that, according to our evaluation
(more details in Section 5.6), the range of best batch size
is very limited (1 ~ 128). As a result, a simple method that
uses a small delta step is already enough to modulate the
parameter to the best one very quickly.

= Snow —

5 [EVALUATION
5.1 Experiment Setup

An RF-RPC based application. To evaluate how applica-
tions can easily and effectively use RF-RPC, we implement
Jakiro, an RF-RPC based in-memory key-value store similar
as Memcached [18] that exports RPC interfaces (i.e., PUT
and GET) for clients to operate key-value pairs. Similar to
many existing works [35], [36], [37], we hash the key to
distributing data to the different partition. The in-memory
data structure of Jakiro is partitioned across different server
threads in an Exclusive Read Exclusive Write (EREW) [35]
fashion, i.e., each server thread only accesses its own data
partition. In our implementation, the in-memory structure
contains a number of buckets, each of which contains eight
slots 4. A slot is used to keep the information of a key-value
pair (such as the memory address that is keeping the pair).
When a bucket is full, we use a strict LRU (Least Recently
Used) policy for slot eviction in this bucket.

Cluster. For the evaluation, we use a cluster based on
InfiniBand for the evaluation. The cluster contains eight
machines, each of which is equipped with dual 8-core CPUs
(Intel Xeon E5-2640 v2, 2.0 GHz), 96 GB memory space,
and a Mellanox ConnectX-3 InfiniBand NIC (MT27500, 40
Gbps). All of these machines are connected by an 18-port
Mellanox InfiniScale-IV switch. Though our RNIC supports
dual-port, we just use one of the two ports to simplify our
experiments. The machines run MLNX-OFED-LINUX-2.3-
2.0.0 driver provided by Mellanox for Ubuntu 14.04 [38].
Workloads. Unless explicitly specified, we choose key-value
pairs with 16-byte key and 32-byte value. This is aligned
with the real-world workloads for in-memory key-value
store [33], [36], [39], [40]. We use YCSB [41] to uniformly
generate 128 million key-value pairs off-line for the experi-
ment. The skewed workload is generated according to Zipf
distribution with parameter .99. For workloads with 32-
byte value-size, we pre-run such workloads and select R
(RDMA-read retrying number) as 5 and F’ (fetching size) as
256 bytes.

Comparison. We firstly compare Jakiro with Pilaf [2] that
adopts server-bypass in Section 5.2. In Section 5.3, we com-
pare Jakiro with two in-memory key-value systems that
use server-reply. The first system is ServerReply, which is
extended from Jakiro and differs from Jakiro in that the
server thread directly sends the result back to the client
thread through RDMA_Write. The other system is RDMA-
based Memcached (denoted as RDMA-Memcached) [7]. In
RDMA-Memcached, the server thread sends status or noti-
fication information to the client thread after it processes the
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requests, and the client thread relies on the information to
do further RDMA operations. We run RDMA-Memcached
in memory mode without interacting with the underlying
persistent storage. We use one machine as the server ma-
chine and other 7 machines as the client machines to run
Jakiro, ServerReply, and RDMA-Memcached. Five threads
are launched in each client machine (35 client threads in
total), which are enough to saturate the server’s RNIC.

5.2 Comparison with Server-Bypass

As mentioned before, server-bypass sometimes cannot
achieve good performance as expected, due to bypass access
amplification. Pilaf [2] is a state-of-the-art in-memory key-
value store using server-bypass. In Pilaf, even with a specific-
design memory-efficient 3-way Cuckoo hash table, client
still needs 3.2 RDMA-read operations in average to com-
plete a GET request. Specifically, these 3.2 lookups include
the round trips used for 1) finding where the key-value
pair is stored in server; and 2) transforming the real data
to client. It does not include the process for addressing
collisions, so that the number can be even bigger if the
chance of collision is high (a write-intense workload rather
than the read-intense one tested by Pilaf). Thus, in theory,
the peak throughput of Pilaf in the experimental cluster
we use is only 3.5 MOPS for uniform and read-intensive
workload (95% GET). According to our evaluation, the peak
throughput of Jakiro that adopts RF-RPC reaches 5.5 MOPS,
which is 57.14% higher than Pilaf’s*.

In contrast, the peak throughput of Jakiro (achieved with
35 client threads) is half of the peak in-bound RDMA IOPS
of this server’s RNIC (11.2 MOPS, as illustrated in Fig. 1).
A closer look reveals that thanks to the fetch-size decision
mechanism in RF-RPC, only 2.005 round-trips on average
are needed in Jakiro to successfully complete a key-value
RPC call: one is to send the request through RDMA-write
and the other 1.005 is to fetch the result through RDMA-
read, making almost no waste of the fetch operations for
RPC results.

Moreover, a client in server-bypass needs more RDMA
operations to complete a request when the conflicts are
heavy. According to Mitchell et al. [2], the peak throughput
of Pilaf under uniform workload with 50% GET is only
1.3 MOPS. The experimental RNICs for Pilaf are 20 Gbps
Mellanox InfiniBand NICs [2]. We also run Jakiro in a cluster
of six machines equipped with 20 Gbps Mellanox Infiniband
NICs, under uniform and 50% GET workload. The peak
throughput of Jakiro on values from 32 bytes to 256 bytes
is about 5.4 MOPS, which is 4x as high as that of Pilaf.

5.3 Comparison with Server-Reply

In this section, we compare RF-RPC with server-reply and
show the performance improvement brought by RF-RPC.
Besides, we also bench the performance of HERD [36] in
the same testing environment. HERD can reach 8.8MOPS
comparing with 5.5MOPS of Jakiro with 32-byte value size.
But HERD uses UD model which can not provide reli-
able connection. Since the fundamental physical devices are

4. Since the code of Pilaf is not available, we directly compare with
the number reported in its paper. The platform we used to test Jakiro is
the same as the environment reported by Pilaf.
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Fig. 7. Throughput of Jakiro, ServerReply, and RDMA-Memcached
on 32-byte value size. Jakiro outperforms ServerReply and RDMA-
Memcached by about 160%~310% in throughput.
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Fig. 8. CDF of latency of Jakiro, ServerReply, and RDMA-Memcached
on value size of 32 bytes.

working in different modes, it is inappropriate to compare
HERD with Jakiro. Thus we do not make the comparison.

5.3.1  Comparison on Throughput

As shown in Fig. 7, the peak throughput of Jakiro on 32-
byte value is 5.5 MOPS. It is about 158% higher than that
of ServerReply (2.1 MOPS) and about 310% higher than that
of RDMA-Memcached (1.3 MOPS) respectively. Although
ServerReply also requires only two round-trips to complete
an RPC call (one is to send the request by the client thread
and the other is to reply by the server), its peak throughput
on key-value pairs is limited by the RNIC’s out-bound
RDMA IOPS (2.1 MOPS). Moreover, when the number of
server threads increases (larger than 6), the throughput of
ServerReply decreases, due to the poor scalability of the
RNIC’s out-bound RDMA operations. In contrast, the server
thread in Jakiro does not have to spend cycles on network
communication. Therefore, launching more than 2 server
threads is enough to serve requests when the server’s RNIC
is saturated by the clients, and the peak throughput of Jakiro
remains 5.5 MOPS in this case (see Fig. 7).

5.3.2 Comparison on Latency

The average latency of Jakiro on key-value pairs with 32-
byte value is 5.78 ps. It beats ServerReply’s average latency
(12.06 ps) by 108% and RDMA-Memcached’s average la-
tency (14.76 ps) by 155%. Fig. 8 illustrates the cumulative
probability distribution of latency of the three systems when
all of them achieve peak throughput with the uniform
and read-intensive workload. We see that ServerReply has
lower 15-percentile latency than Jakiro. This is caused by the
following: (1) a single RDMA-write has lower latency than a
single RDMA-read, as RDMA-write needs less state and op-
erations than RDMA-read in the RNIC. Such phenomenon
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Fig. 9. Throughput of Jakiro and ServerReply under different request
process time at server side. Jakiro and ServerReply have comparable
performance when the request process time becomes larger, as RF-
RPC automatically switches to server-reply.

also has been observed in HERD [36] and RDMA-PVES [14];
(2) server sends back the result to client immediately in
ServerReply, while in Jakiro it has to (possibly) pay an extra
delay before clients come to fetch the result.

However, as the RNIC has limitation on out-bound
RDMA, ServerReply imposes higher latency (e.g., 50-
percentile latency or 99-percentile latency) than Jakiro when
more operations are observed. In Jakiro, about 99% RPC calls
are below 7 us, which is significantly better than ServerRe-
ply and RDMA-Memcached. Moreover, all the three RDMA-
based systems suffer from the long-tail latency issue, while
the one from Jakiro is shortest.

Additionally, our auto-switch mechanism balances la-
tency and throughput. For Jakiro, some RPC calls suffer
higher latency (15~17 ps) because they have to go through
more round-trips (4-8) for request sending and result fetch-
ing. However, the RPC calls that need more than 2 round-
trips to complete only account for a small proportion (0.2%)
and no two continuous calls suffer from 5 RDMA-read
retries to fetch the result. Developers using RF-RPC can
avoid unnecessary switch between repeated remote fetching
and server-reply to balance throughput and latency, by con-
figuring how many contiguous RPCs that exceed the switch
point should happen before a real switch happens. In this
case, Jakiro achieves 5.5 MOPS peak throughput as well as
having a low latency.

Fig. 9 displays the performance of Jakiro and ServerRe-
ply under different request process time (using 16 server
threads and 35 client threads). We mimic the processing
procedure with a for loop, so that we can exactly control
the process time by using the RDTSC instruction. As we
see from the figure, when the request process time is less
than 7 us, repeated remote fetching with 5 times is enough
to successfully fetch the result back in RF-RPC. Thus, the
throughput of Jakiro is about 30%~320% higher than that
of ServerReply. ServerReply is still bounded by out-bound
RDMA of the server’s RNIC in this case. When the request
process time is larger than or equal to 7 us, the performance
of Jakiro mainly depends on the server load instead of the
performance asymmetry from the in-bound and out-bound
operations. Under this circumstance, repeated remote fetch-
ing does not increase the performance and RF-RPC switches
to server-reply after 5 failed retries in two continuous RPC
calls with our current hardware configuration. Jakiro and
ServerReply have comparable performance when the re-
quest process time (i.e., server load) becomes larger, as both
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Fig. 11. Throughput of different thread under uniform and skewed work-
loads, when every thread has 3 QPs.

of them require more server resources at this time. There-
fore, RF-RPC achieves good performance for applications
under different server loads.

5.4 Breakdown of RDMA Optimizations

To evaluate the optimizations mentioned in Section 3.2,
we measure the performance gain of two optimizations
(“unsignal” and “inline”) as shown in Fig. 10. We don’t
apply the inline optimization to RF-PRC-batch due to the
payload size of RF-RPC-batch exceeds one or two cache-line
size (as we described before, inline optimization doesn’t suit
for larger size payload).

As we can see from this figure, the”inline” and
“unsignal” optimization will bring with nearly 30%
throughput improvements in both RDMA-Write and RF-
RPC. Furthermore, unsignal optimization will bring more
improvements compared with inline optimization. The in-
line optimization is only available for RDMA_Write and
RDMA_Send/Recv operations. So the effects of inline opti-
mization are not significant in RF-RPC and RF-RPC-batch
due to that we can only benefit from inlining data when
sending requests via RDMA_Write.

5.5 Performance of Multi-QPs/Single-QP per-thread

As we have mentioned in Section 3.1, although the number
is less than server-reply, RF-RPC still needs to use NxM
queue pairs (QPs) if the number of server processes is N
and the number of clients is M. In order to manage these
QPs, there are mainly two kinds of mapping mechanisms.
Specifically, the most straightforward method is creating one
thread for every QP and let the OS kernel to schedule these
threads. In contrast, one can also create only one thread for
every CPU core and assign QPs to these threads equally. If
a thread is assigned with multiple QPs, it can poll them in a
round robin fashion. This second method is adopted by our
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Fig. 12. Throughput of different thread under uniform and skewed work-
loads, when every thread has one QP.

implementation because it avoids the cost of thread context
switch and hence leads to a better performance.

In order to justify our choice, we evaluate both kinds of
mechanisms with 42 clients that continuously issuing key-
value operations (32 bytes value, read-intensive (95% GET)
workload). The results are presented in Fig. 12 and Fig. 11,
in which the server creates 42 threads (one per client) and
14 threads (one per core and each thread is assigned with
3 QPs), respectively. As we can see from the figure, when
the distribution of keys follows a uniform distribution, the
total throughput is 4.73 MOPS if the thread is only created
for every CPU core. This number is about 1.51 x larger than
the simpler single-QP per-thread setting.

Moreover, we've also evaluated these two kinds of mech-
anisms under skewed workload (Zipf distribution with pa-
rameter .99). The results are two-fold. First, compared with
the uniform workload, there exists an obvious difference
between the throughput of different threads. However, the
sum of these per-core throughput seems to be equal to the
result of uniform workload. As a result, multi-QPs per-
thread is still better than single-QP per-thread in the skewed
workload. This phenomenon is also observed by A. Kalia, et
al. [36] in their evaluation of HERD.

5.6 Comparison under Different Batch Size

In this section, we evaluate the effect of using batching
and our automatic batch size choosing mechanism. Specif-
ically, we integrate batching into both RF-RPC and server-
reply, which result in RF-RPC-batch and server-reply-batch
respectively. The comparison between these two systems
demonstrates that RF-RPC-batch can achieve both higher
throughput and lower latency than server-reply-batch when
they are set with the same batch size. Moreover, we also
present the evaluation results of RF-RPC-auto-batch, whose
batch size is automatically selected to ensure that at most 5%
of the messages latency is higher than the user-given upper
bound (i.e., & = 5%). All the experiments are executed on
a setting of 16 server processes connected with 35 client
processes. The size of value and key are 32 bytes and 16
bytes, respectively.
Throughput Fig. 13 presents a comparison between the
above three systems. For RF-RPC-batch and server-reply-
batch, we manually modulate the batch size from 2 to 96
and report the corresponding throughput and latency in the
figure.

First, We make performance comparisons to show the
improvement of batching. The throughput of RF-RPC-batch
(62.7 MOPS) can reach 11.3x in peak compared to RF-RPC.
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Besides, RF-RPC-batch can perform 3.9x throughput than
RF-RPC with only 8% increase of latency (6.17us) when
batch size is 4.

As we can see from the figure, with the increasing of
batch size, both the throughput of RF-RPC-batch and server-
reply-batch are increased, which also leads to an increasing in
latency. However, although RF-RPC-batch does not change
the fact that one cannot achieve the best of throughput and
latency simultaneously, the results show that RF-RPC-batch
can achieve a better throughput at any specific latency. As
a illustration, when batch size is set to 24, RF-RPC-batch can
execute 45.80 MOPS at a latency of only 12.63 us, while
server-reply-batch’s throughput is only 21.67 MOPS if an
average of 12.63 s latency is required.

Finally, we evaluate the achieved throughput of RF-

RPC-auto-batch when different upper bound of latency is
given, which results are also plotted in Fig. 13. We can
see from the figure that our automatic parameter tuning
mechanism works well as it can approximate the best-
possible throughput for users. The reason why RF-RPC-
auto-batch’s throughput is lower than RF-RPC-batch is that: 1)
for RF-RPC-auto-batch, the reported latency is the user-given
upper bound, so that the system should ensure that less than
5% of the requests will be returned later than that threshold;
in contrast, 2) the latency of the other two systems are only
the average latency, which does not give any guarantee of
how many percentages of requests’ latency are higher than
that (typically much larger than 5%).
Latency Fig. 14 presents a more detailed demonstration of
the relationship between batch size and latency. As we can
see, the latency is nearly linear correlation with the batch
size. More importantly, as we have mentioned before, RF-
RPC-batch can always achieve a better latency than server-
reply-batch when they are using the same batch size. Accord-
ing to our results, the latency of server-reply-batch is about
18%~100% higher than RF-RPC-batch.
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Fig. 15. With skewed workload, throughput of RF-RPC-batch, RF-RPC-
auto-batch, ServerReply-batch and RF-RPC under different latency.

TABLE 3
Throughput of RF-RPC and ServerReply under different RNIC and
with/without batch (using only 4 cores in server side).

ConnectX-3 ConnectX-4
ServerReply Jakiro ServerReply Jakiro
Without Batch 1.66 MOPS 3.05 MOPS 2.26 MOPS 4.48 MOPS
Batch Size is 16 10.1 MOPS 12.3 MOPS 16.7 MOPS 22.6 MOPS

Skewed Workload We also measure the three systems,
RE-RPC-auto-batch, RF-RPC-batch and server-reply-batch with
skewed workload. The keys in skewed workload are gen-
erated according to a Zipf distributed with parameter .99.
The results are presented in Fig. 15, which shows that the
skewness of workload does not impact the results much.

5.7 Faster RNIC

Fundamentally, RF-RPC should fit to any RDMA hardware
configuration with the similar system settings i.e. one server
serving multiple clients. We verified RF-RPC using Jakiro
on a cluster with a different configuration i.e. equipped
with faster RNIC. This cluster contains five machines and
each machine is equipped with one 4-core CPU (Intel
Xeon E5-2407 v2, 2.4GHz) and 32 GB memory space. They
are interconnected with Mellanox ConnextX-4 InfiniBand
NIC (MT27700, single-port) which can provide 100Gbps
bandwidth. All of these machines run Ubuntu 16.04, with
MLNX-OFED-LINUX-4.0-2.00 driver provided by Mellanox
for Ubuntu 16.04. This cluster is much smaller than the one
used in previous experiments. Four of the five machines act
as client machines and each of them creates 4 clients (i.e.,
4x4=16 clients), which are served by 4 server processes that
hosted in the single server machine. All the experiment are
using 32 bytes value size and uniform read-intensive (95%
GET) workload.
Throughput Table 3 presents our evaluation results. The
throughput of Jakiro under ConnectX-4 is about 47% higher
than Jakiro under ConnectX-3. The increasing is limited
because we have only 4 cores in the server side. As a result,
the server’s CPU becomes the bottleneck and hence cannot
fully unleash the potential of 100Gbps InfiniBand NIC.
However, even in this circumstance, the throughput of
Jakiro is still nearly 98% higher than ServerReply (with
ConnectX-4 InfiniBand NIC). This result demonstrates that
our novel paradigm is general enough to be used in different
kinds of RNIC. Similarly, when the batch size is 16, Jakiro’s
throughput is 22.6 MOPS, which is about 84% higher than
Jakiro with the batch size under ConnectX-3, and it is also
higher than the corresponding ServerReply setting.
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TABLE 4
Throughput of RF-RPC and ServerReply under different RDMA
protocols (one-to-one configuration).

Type RoCE Infiniband
ServerReply | 1.21 MOPS | 1.30 MOPS
RF-RPC 1.72MOPS | 1.85 MOPS

Latency When running Jakiro with ConnectX-4, the average
latency is 3.60 ps, which is 1) about 47% faster than the
average latency of running ServerReply under ConnectX-4
(6.77 ps); and 2) about 29% faster than running Jakiro under
ConnectX-3 (5.06 us).

5.8 Ethernet-Based RDMA Protocol

We choose the RoCE to evaluate RE-RPC due to that Ro-
CE/RoCEv2 is more commonly used than iWARP (Only a
single vendor (Chelsio) supports iWARP on its own prod-
ucts). To evaluate the effects of using RoCE, we use a cluster
based on Ethernet. Mellanox ConnectX VPI NIC series can
support both Infiniband and Ethernet modes. According to
this, we use ConnectX-3 VPI NIC and initiate it as a 10 GigE
adapter card with Link Layer is Ethernet. So we can run
RoCE protocol upon the Ethernet. This cluster contains three
machines, each of which is equipped with an 8-core CPUs
(Intel Xeon E5-2640 v2, 2.0 GHz), 96 GB memory space. We
use one of three machines as server and others as clients.
To better demonstrate the difference between RoCE and
Infiniband, we use one-to-one configurations (one server
thread to one client thread). As shown in Table 4, our
paradigm can also fit the RoCE protocol with little per-
formance loss. Moreover, the gap between RF-RPC and
ServerReply on RoCE will be less than on Infiniband envi-
ronment. The reason is that the link layer of RoCE is based
on Ethernet, and some special features which are friendly to
out-bound verbs don’t exist in Ethernet link layer.
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Fig. 16. Throughput of RF-RPC-batch, RF-RPC-auto-batch,

ServerReply-batch and RF-RPC under different latency with RoCE.

With RoCE environment, We also measure RF-RPC-batch
with different batch size in the Fig. 16. Two of the three
machines act as client machines and each of them creates 8
clients (i.e., 2x8=16 clients), which are served by 8 server
processes that hosted in the single server machine. All the
experiments are using 32 bytes value size and uniform
read-intensive (95% GET) workloads. For RF-RPC-batch and
server-reply-batch, we manually modulate the batch size from
2 to 96 and report the corresponding throughput and la-
tency. As shown in Fig. 16, The increasing trending is simi-
lar as batching over Infiniband: 1) when batch size is smaller,
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throughput increase rapidly with raising little increment of
latency, and 2) with larger batch size, throughput stop to
increase and latency will increase rapidly. Another obser-
vation is that the throughput in RoCE environment cannot
reach very high compared with Infiniband environment.
There are two reasons 1) the bandwidth of RoCE is only
10Gbps (compared with 40Gbps of Inifiniband) and 2) two
clients cannot fully saturate the network (compared with
7 clients in our Infiniband cluster). The last observation is
that the latency in RoCE environment will be little lower.
Obviously, with fewer clients, the latency of server handling
requests will reduce. So it will lead to lower total latency.

6 RELATED WORK

Different Queue Pair Types. There are three kinds of queue
pair types that can be used to support RDMA. RF-RPC, like
all the server-bypass solutions, requires the use of Reliable
Connection (RC), because it is the only queue pair type
that supports both one-sided RDMA-Read and RDMA-Write.
The other two kinds of queue pair types, i.e.,, Unreliable
Connection (UC) and Unreliable Datagram (UD), provide
only unreliable transport services, so that there is not any
guarantee that the messages are received by the other side:
corrupted and silently dropped are both possible. More-
over, they only support limited APIs (UC does not support
RDMA-Read, while UD neither supports RDMA-Read nor
RDMA-Write), which prohibits users from relieving server
from handling packets.

There are some works that build key-value stores upon

UD and UC, such as HERD [36] and FaSST [42], which may
achieve higher performance than RC-based solutions. This
is reasonable because the reliable-guaranteeing mechanism
itself imposes certain overhead, but it is at a cost of requiring
the applications to handle many subtle problems, such as
message lost, reorder and duplication. Considering the fatal
outcome, even if such subtle problems rarely happen in the
real-world [42], they cannot be simply ignored. Moreover,
as these UD and UC based methods require server to send
results back to clients, the consumed server CPU cycles
may become a bottleneck when the IOPS is extremely high.
Figure 8 also demonstrate that Jakiro achieves better latency
so that RF-RPC is more suitable for latency-sensitive appli-
cations. Anuj et al. [27] also present a guideline of using
RDMA, which provides many useful optimization tech-
niques. However, the main techniques the paper presents,
such as Doorbell batching, can only be used for UD-based
solutions. The other techniques that related to the hardware
are orthogonal to our paradigm, so they can be used to
further improve RF-RPC’s performance.
Different Paradigms. Other existing RDMA-based solutions
usually apply server-reply [71, [8], [14], [15], [16], [17], [43],
server-bypass [3], [5], [19], [30], or a combination of these two
paradigms [2], [20]. As we have demonstrated in Section 5,
RF-RPC can be faster than these two traditional paradigms,
as it 1) uses only in-bound RDMA in the server side;
and 2) avoids the “bypass access amplification” problem.
In those server-bypass-based applications, multiple RDMA
operations (3~6) are usually needed to complete a request
[2], which number can be even higher when conflicts from
multiple clients are heavy.
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RF-RPC also involves only moderate migration overhead
for those legacy applications that use RPC, because it does
not require any application-specific data structures to be
feasible. In contrast, Pilaf and C-Hint have to propose so-
lutions to reason about data consistency [2], [5]. DrTM relies
on explicit locks and high-performance HTM for data race
coordination [19].

Wukong [30], [44] is an distributed graph-based RDF
store. Wukong provides highly concurrent and low-latency
queries by using DrTM-KV, which is an one-sided RDMA-
friendly distributed key-value store derived from DrTM.

FaRM [3], [45] is also a memory distributed computing
platform that adopts server-bypass. It is reported to be able to
perform 167 million key-value lookups per second with 20
machines (i.e., about 8M requests per second per server),
which is larger than RF-RPC. Nevertheless, FaRM uses
Hopscotch hashing that leads to something like “batching
the requests” for performance. With FaRM, a client needs to
fetch N * (Si+S,) data to get a single key-value pair, where
N is usually larger than 6, S, and .S, are the size of key and
value respectively. As a result, 1) the average latency for
FaRM to get key-value pairs with 16-byte key and 32-byte
value is 35us, which is about 5x higher than that of RF-RPC;
and 2) a lot of the bandwidth and MOPS will be wasted if
only a few data in the NV fetched key-value pairs are used.

Some works aim to simplify RDMA programming
paradigm (RF-RPC also focus on this). LITE [46] is a rep-
resentative work, which is a middle-ware in Linux kernel to
provide easy-to-use interfaces and share resources safety.

7 CONCLUSION

This paper proposes a new RDMA-based communication
(programming) paradigm named RF-RPC, which supports
traditional RPC interfaces as well as providing high per-
formance. The design of RF-RPC is based on the analysis
current design choices for RDMA enabled networking. RF-
RPC totally avoids server from involving network opera-
tions and make server CPU process the requests. The former
can increase the network capability on server to serving
more requests. And the later can avoid the problem of access
amplification. Thus, RF-RPC is able to support traditional
RPC interface based applications. By counter-intuitively
making clients fetch results from server’s memory remotely,
RF-RPC makes good usage of server’s in-bound RDMA
and thus achieves higher performance. Experiments show
1.6x improvement of RF-RPC over server-reply and 4x im-
provement of RF-RPC over server-bypass respectively. With
batching and optimization methods, RF-RPC-batch performs
at most 11.3x throughput than RF-RPC. We also propose
an automatic parameter tuning mechanism to make the
trade-offs between higher throughput and lower latency.
We believe RF-RPC can be integrated into many RPC-based
systems to improve their performance without much effort.
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