
1

RFP: When RPC is Faster than Server-Bypass with RDMA

Maomeng Su1 Mingxing Zhang1 Kang Chen1 Zhenyu Guo2 Yongwei Wu1

1Tsinghua University ⇤ † 2Microsoft Research ‡

Abstract
Remote Direct Memory Access (RDMA) has been widely
deployed in modern data centers. However, existing us-
ages of RDMA lead to a dilemma between performance
and redesign cost. They either directly replace socket-based
send/receive primitives with the corresponding RDMA
counterpart (server-reply), which only achieves moderate
performance improvement; or push performance further by
using one-sided RDMA operations to totally bypass the
server (server-bypass), at the cost of redesigning the soft-
ware.

In this paper, we introduce two interesting observations
about RDMA. First, RDMA has asymmetric performance
characteristics, which can be used to improve server-reply’s
performance. Second, the performance of server-bypass is
not as good as expected in many cases, because more rounds
of RDMA may be needed if the server is totally bypassed.
We therefore introduce a new RDMA paradigm called Re-
mote Fetching Paradigm (RFP). Although RFP requires
users to set several parameters to achieve the best perfor-
mance, it supports the legacy RPC interfaces and hence
avoids the need of redesigning application-specific data
structures. Moreover, with proper parameters, it can achieve
even higher IOPS than that of the previous paradigms.

We have designed and implemented an in-memory key-
value store based on RFP to evaluate its effectiveness. Ex-
perimental results show that RFP improves performance
by 1.6⇥⇠4⇥ compared with both server-reply and server-
bypass paradigms.

⇤ Department of Computer Science and Technology, Tsinghua National
Laboratory for Information Science and Technology (TNLIST), Tsinghua
University, Beijing 100084, China; Research Institute of Tsinghua Univer-
sity in Shenzhen, Guangdong 518057, China.
† M. Su is now with Huawei Inc.
‡ Z. Guo is now with Ant Financial Inc.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

EuroSys ’17, April 23-26, 2017, Belgrade, Serbia

c� 2017 ACM. ISBN 978-1-4503-4938-3/17/04. . . 15.00

DOI: http://dx.doi.org/10.1145/3064176.3064189

Server-bypass RFP Server-reply

Porting Cost High Moderate Low

Expected
Performance

Measured
Performance

Measured
Performance

Measured
Performance

Bypass Access
Amplification

In-Bound vs. Out-
Bound Asymmetry

Figure 1. Improvements of RFP over server-reply and
server-bypass. A higher bar means better performance.

1. Introduction
RDMA is a novel network technology that offers low-
latency, high-bandwidth, and server-bypassing features,
which has been widely deployed in modern data centers [4,
8, 10, 15, 19, 23, 29, 30, 34]. A common usage of RDMA
is to replace original TCP/IP socket send/receive primitives
with the corresponding RDMA counterpart, so that the same
RPC interfaces can be implemented [7, 9, 10, 19, 31, 33, 34].
This way boosts applications’ performance with minimal
programming cost. For example, RDMA-Memcached [10]
has applied this approach to Memcached [21], and it gains
a performance improvement of 4⇥⇠6⇥ compared with that
of using TCP/IP. We denote such design paradigm as server-
reply, because it requires the server to reply results to clients.

However, the above approach does not really unleash all
the power of RDMA. The iconic feature of RDMA is that it
also provides one-sided operations, which totally bypasses
CPU and OS kernel on remote machines. Another way of us-
ing RDMA is therefore to make clients access server’s mem-
ory directly. Recent works such as Pilaf [23] and FaRM [4]
have done great work towards this direction, and validated
that server-bypassing can be faster than server-reply-based
applications by as much as 100% [4, 23, 30, 32]. We denote
this design paradigm as server-bypass [23].

While relieving server CPU from handling network pack-
ets can achieve better performance, it relies on developers to
design specific data structures and algorithms, so that one-
sided RDMA operation is feasible for the given problem.
For instance, Pilaf [23] (a key-value store) uses CRC64 for
data race detection among GET from clients (using server-

2

bypass) and PUT on server (using server-reply), while it
also designs a specific hash-table to reduce the number of
RDMA operations for completing GET requests. This be-
comes a dilemma between redesign cost and performance.
More importantly, these special data structures are usually
application-specific. For example, a data structure designed
for serving GET/PUT operations on a key-value store can-
not be used for other kinds of applications, such as those
with simple statistic operations [30].

To solve this dilemma, we propose a new RDMA-based
RPC paradigm called Remote Fetching Paradigm (RFP). In
RFP, the server processes the requests sent from clients,
so that its CPU usage is similar to that with traditional
RPC interfaces. As a result, applications that use tradi-
tional RPC can remain largely unchanged. Meanwhile, RFP
achieves higher performance than both server-reply and
server-bypass, which comes from the two observations il-
lustrated in Figure 1.

The first is in-bound vs. out-bound asymmetry. Specif-
ically, issuing a one-sided RDMA operation (i.e. out-bound
RDMA) has much higher overhead than that of serving one
(i.e. in-bound RDMA). This is because, taking RDMA Read
as an example, the issuing side needs to maintain certain
context and involve both software as well as hardware to
ensure the operation is sent and completed, while the serv-
ing side is purely handled by hardware. As a result, taking
the RDMA Network Interface Card (RNIC) from InfiniBand
we have in hand as an example, the peak IOPS (Input/out-
put Operation Per Second) of in-bound RDMA (about 11.26
MOPS1) is about 5⇥ higher than that of out-bound RDMA
(about 2.11 MOPS). This explains why server-reply is sub-
optimal: besides not bypassing server’s CPU, it also requires
server to issue RDMA operations, which is bounded by
the limit of out-bound RDMA. The latter is quickly satu-
rated while the in-bound IOPS are far from being saturated
by client requests. In the above example, there is only one
RDMA Read operation issued by the client and handled by
the server. It is called to be out-bound RDMA on the issuing
side and called to be in-bound RDMA on the other side.

The second observation is bypass access amplification,
which leads to a significant gap between expected perfor-
mance and measured performance of server-bypass. The for-
mer corresponds to the ideal case where only one RDMA
operation is required to complete a request, which is usually
not true in reality. The root cause is that CPU processing on
server is bypassed and multiple clients need to coordinate
their access to avoid data access conflict with more RDMA
operation rounds! Moreover, they may also need additional
RDMA operations for meta-data probing to find where the
data is stored on server. Thus, the measured performance of
server-bypass is typically much lower than its expected one.
For example, Pilaf uses 3.2 RDMA operations for each GET
request on average even with read-intensive workloads. The

1 MOPS: million operations per second.

performance is even worse when conflicts are heavy (e.g.,
with write-intensive workloads) [14, 17, 25].

Inspired by the two observations, RFP makes two impor-
tant design decisions. First, to alleviate the constraint of in-
bound vs. out-bound asymmetry, server buffers the results in
its local memory instead of sending results back to clients
through out-bound RDMA operations. Instead, clients use
RDMA Read to fetch these results remotely, so that the
server only handles in-bound RDMA. This way leverages
the in-bound RDMA performance of the server’s RNIC by
offloading the result-transferring responsibility from server
to clients. Second, RFP requires the server to be responsi-
ble for processing the incoming requests. This way not only
avoids performance degradation due to bypass access ampli-
fication, but also avoids the need of redesigning application-
specific data structures.

There are two major challenges to implement this new
paradigm. The first is when clients should fetch the results
from server. A straw-man design is clients repeatedly polling
the possible results on server, which ensures low latency, but
at the cost of wasted remote RDMA-reads and high CPU
consumption at clients’ side, as well as wasted in-bound
RDMA operations at server side. The second challenge is
with what size to fetch the results from server as clients do
not know the response size for RPC calls. Using an RDMA
operation to get the size separately requires at least two
remote fetches for each RPC call, lowering the performance
unnecessarily [4, 23].

To address these challenges, RFP uses a hybrid mech-
anism that adaptively switches between repeated remote
fetching and server-reply. A client uses RFP will at first con-
tinuously try to fetch the result from the server after it sends a
request. But if it fails to fetch the result after a certain thresh-
old of retries, it will switch to the traditional server-reply
paradigm and wait for the server to send the result back. The
threshold should be decided according the hardware config-
uration, so as to achieve a good trade-off between perfor-
mance and client CPU consumption. Our mechanism auto-
matically switches between continuous remote fetching and
server-reply based on server load. Thus, RFP at least has the
same performance with the server-reply paradigm when the
server load becomes extremely high.

Moreover, we design an inline-based mechanism that re-
quires clients to fetch a region of data and the size at once.
By choosing an appropriate fetching size, we are able to
maximize the chance of getting the whole result with one
single RDMA operation. This mechanism can significantly
reduce the average number of RDMA operations used for an
RPC call, especially when the size of result is usually small.
In RFP, the fetching size is adaptively set according to appli-
cation characteristics and RNIC configurations, so that it is
able to guarantee optimal performance for applications with
different result size.

3

Client Client Stub

Server Server Stub

Call

Return

Call

Return

Receive

Receive

Send

SendProcess Requests

Request Send (1st step)
Request Process (2nd step)
Result Return (3rd step)

Figure 2. Overview of an RPC mechanism. The three steps
can be optimized by RDMA with different design choices.

To calculate the optimum RDMA-read retrying number
and fetching size, we model the problem into a parameter
selection problem. Our solution leverages the hardware char-
acteristics to get the lower bound and upper bound of these
parameters, and connects them to application characteristics
through pre-run and on-line sampling to approach the best
performance results. Since using inappropriate parameters
may offset the performance advantage of using RFP, these
parameters should be carefully selected by the users, which
is not required in previous works. However, as we will dis-
cuss in Section 3.2, the range of useful parameters is very
limited so that the overhead of this selection procedure is
acceptable.

The main contributions of this paper are as follows: (1)
we report two key observations about RDMA and its us-
age paradigms; (2) we propose a new RDMA-based RPC
paradigm called RFP that provides higher performance and
incurs only moderate porting cost; (3) we design and imple-
ment an in-memory key-value store named Jakiro to vali-
date the effectiveness of RFP. Experiment results show that
RFP improves the throughput2 by 1.6⇥⇠4⇥ under different
workloads, compared with server-bypass and server-reply.

The rest of this paper is organized as follows. Section 2
describes the two observations. Section 3 presents RFP in
detail, as well as the solutions to address the challenges. We
evaluate RFP in Section 4. Section 5 discusses the related
works and we conclude in Section 6.

2. Design Choices and Observations
In this section, we discuss the design choices of implement-
ing RPC using RDMA, followed by our two observations
that lead to the key design decisions in RFP.

2.1 Design Choices for RDMA-Based RPC
As one of the most prevalently used communication mech-
anisms in distributed applications, RPC is well known for
hiding the complexity of message-based communication for
upper applications [14, 25, 27, 34]. Currently, there are many

2
Throughput in this paper means the number of requests completed per

second.

Request Send Request Process Result Return
Server-reply In-bound RDMA Server involved Out-bound RDMA

Server-bypass In-bound RDMA Server bypassed In-bound RDMA
RFP In-bound RDMA Server involved In-bound RDMA

Meaningless In-bound RDMA Server bypassed Out-bound RDMA

Table 1. Design paradigms based on all possible design
choices for applying RDMA (from the server’s perspective).

variations and subtleties in the implementation of RPC,
which results in a variety of different (incompatible) RPC
mechanisms. However, a typical RPC call always consists
of three steps, shown in Figure 2: (1) the Request Send step
that client sends the function call identity as well as parame-
ters to server; (2) the Request Process step within which the
requests are processed to generate results on server; (3) the
Result Return step where the results are transferred to client
[2, 6].

Table 1 illustrates the design choices for each step in
an RPC call with RDMA. For Step 1, as server does not
know when client may invoke an RPC call, the only choice
is that client uses out-bound RDMA operations to send the
request to server. In this case, server always uses in-bound
RDMA operations. Step 2 has two choices according to
whether server is involved in processing the request. Porting
cost is lower if server is involved. Server-reply follows this
paradigm. Server-bypass does not require server to process
the requests and hence reduces CPU utilization on the server.
The cost is that special data structures are needed for each
different application to coordinate the concurrent accesses
from multiple clients. Step 3 also has two choices for trans-
ferring data from server to client. Server can directly send
the result to client by issuing out-bound RDMA operations
from server, or client can fetch the result from server’s mem-
ory through RDMA-read (i.e., in-bound RDMA to server),
which are adopted by server-reply and server-bypass, re-
spectively. For completeness, Table 1 lists all possible design
choices, one of which is meaningless, i.e., server does not
process requests but sends results using out-bound RDMA.

2.2 In-Bound vs. Out-Bound Asymmetry
To quantify the asymmetry and study other properties such
as scalability, we wrote some micro benchmarks and run
them against a cluster of eight machines. Each machine
is equipped with a Mellanox ConnectX-3 InfiniBand NIC
(MT27500, 40 Gbps) [20] and dual 8-core CPUs (Intel Xeon
E5-2640 v2, 2.0 GHz). Details of these machines are pre-
sented in Section 4. We choose one machine as server and
others as clients. This is a typical client-server architecture.
We measure the IOPS of issuing out-bound RDMA opera-
tions (i.e., issuing RDMA Write to clients) and serving in-
bound RDMA operations (i.e., receiving RDMA Read from
clients) on the server machine. The out-bound IOPS is tested
by letting server continuously issue RDMA Write operations
to other 7 clients. Each server thread randomly chooses a

4

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 6 8 10 12 14 16

IO
P

S
 (

M
O

P
S

)

Number of Server Threads

Out-bound RDMA
In-bound RDMA

Figure 3. The IOPS of out-bound RDMA operations and
in-bound RDMA operations with 32-byte data.

client machine, and issues an RDMA Write operation to its
memory, and repeats this operation after the current one is
completed. Similarly, the in-bound IOPS is tested by letting
7 clients issue RDMA Read operations to server. Memory
buffers for client threads and server threads are independent
and do not impact each other. For both tests, we launch four
threads on each client machine to saturate the server’s RNIC.

In order to simulate the common manner of issuing RPC
requests, rather than issuing asynchronous RPC requests, we
always wait for an RDMA operation’s completion before
starting the next operation. In other words, different threads
may issue RDMA operations concurrently, but at most one
operation is processed by each thread. As discussed by many
existing works [11, 13], batching the requests or issuing sev-
eral RDMA operations without waiting for the notifications
of their completion can improve the performance. However,
these optimizations are not always applicable and are out of
this paper’s topic.

Figure 3 shows the IOPS difference between out-bound
RDMA operations and in-bound RDMA operations with 32-
byte data. We see that the peak IOPS of in-bound (11.26
MOPS) is about 5⇥ higher than that of out-bound (2.11
MOPS). We repeat this experiment with all the three kinds
of RNICs we have (i.e., ConnectX-2, ConnectX-3, and
ConnectX-4), and the results show that this asymmetry ap-
pears on all these different versions of hardware.

Our further discussion with developers in Mellanox ex-
plains why. For a one-sided RDMA operation, works on the
side that receives/responds this operation (i.e., in-bound) are
all handled by RNIC’s hardware; while the other side that is-
sues this operation (i.e., out-bound) requires interactions be-
tween hardware and software to ensure the operation is sent
and completed. As a result, the workload on the receiving
side (in-bound) is lighter and processed faster for one single
data transfer through RDMA. As a circumstantial evidence
of our speculation, the other two-sided RDMA operations,
such as RDMA Send/Recv, do not show asymmetry.

We also evaluate the IOPS under different client threads
and different data size to study its scalability. The results
show that server’s in-bound RDMA IOPS decreases when
the number of threads on each client has passed a certain
threshold (see Figure 4). This is because clients experience
some software contentions (caused by mutex) and hardware

 0

 2

 4

 6

 8

 10

 12

 14

7 14 21 28 35 42 49 56 63 70

IO
P

S
 (

M
O

P
S

)

Number of Client Threads

Figure 4. The IOPS of server’s in-bound RDMA under
different number of client threads.

 0

 2

 4

 6

 8

 10

 12

 14

32 64 128 256 512 1024 2048 4096

IO
P

S
 (

M
O

P
S

)

Data Size (Bytes)

In-bound RDMA
Out-bound RDMA

Figure 5. The IOPS of out-bound RDMA and in-bound
RDMA under different size.

contentions (caused by using multiple queue-pairs (QP) and
completion queues (CQ)) when issuing the RDMA opera-
tions, therefore the out-bound IOPS does not scale on clients,
which decreases server’s in-bound IOPS. Figure 3 shows
that four server threads (each bounded to a dedicated CPU
core) are enough to achieve peak out-bound performance
at 2.11 MOPS. These phenomena further justify our argu-
ment that there are certain contentions between the com-
peting client threads issuing RDMA operations, which limit
the peak IOPS of out-bound RDMA. As shown in Figure 5,
one can note that when the data size is larger than 2 KB,
in-bound RDMA and out-bound RDMA perform the same
in IOPS, because the bandwidth becomes the bottleneck in
this case. In contrast, when data size is less than 2 KB, in-
bound RDMA significantly outperforms out-bound RDMA
in IOPS.

The study shows that although server-reply provides good
programmability, it suffers from low performance (at most
2.1 MOPS) as its IOPS is limited by the out-bound RDMA
IOPS of server.

2.3 Bypass Access Amplification
Server-bypass allows clients to directly read/write server’s
memory through one-sided RDMA operations without in-
volving CPU processing on server. This has been considered
a promising approach for building high performance appli-
cations with RDMA [4, 23, 30, 32]. However, as CPU pro-
cessing is bypassed, the application has to rely on specific
design of data structures and algorithms to do the coordi-
nation among multiple clients as they may access the same

5

APIs Description
client send(server id,local buf,size) client sends message (kept in local buf) to server’s memory through RDMA-write

client recv(server id,local buf) client remotely fetches message from server’s memory into local buf through RDMA-read
server send(client id,local buf,size) server puts message for client into local buf

server recv(client id,local buf) server receives message from local buf
malloc buf(size) allocate local buffers that are registered in the RNIC for message transferring through RDMA

free buf(local buf) free local buf that is allocated with malloc buf

Table 2. The basic APIs provided by RFP for implementing RPC. All local buf s are allocated with malloc buf. Messages are
directly put into these buffers for transferring through RDMA.

 0

 1

 2

 3

 4

 5

 6

2 3 4 5 6 7 8 9 10 11 12 13 14 15
 6

 7

 8

 9

 10

 11

 12

T
h

ro
u

g
h

p
u

t
(M

O
P

S
)

IO
P

S
 (

M
O

P
S

)

Number of RDMA Operations per Request

Throughput
IOPS

Figure 6. The throughput declines in server-bypass when
more RDMA operations are needed to achieve a single client
request.

memory region which leads to data race! The support for
legacy RPC applications is therefore bad, and the program-
ming is also not easy (like all the other lock-free data struc-
tures and algorithms).

Moreover, server-bypass in many cases cannot achieve
good performance as expected, when multiple RDMA oper-
ations are required to complete a request. Take Pilaf as an
example, even with a 75%-filled 3-way Cuckoo hash table,
a client in Pilaf has to spend 3.2 RDMA-read operations on
average on metadata probing (find where the key-value pair
is stored in server) and data transferring for completing a
key-value GET [23]. It slows down the performance boost
by RDMA. Even worse, without server involved in request
processing, clients have to use more RDMA operations to re-
solve conflicts themselves in a request. As illustrated in Fig-
ure 63, when conflicts are heavy with write-intensive work-
loads [14, 17, 25], the throughput even decreases to below
1 MOPS due to an increasing number of RDMA operations
involved. This significantly curbs the usage of server-bypass
for a wide range of applications.

3. RFP: Remote Fetching Paradigm
Based on the two observations above, this section present the
design of Remote Fetching Paradigm (RFP), a new RDMA-
based RPC paradigm that provides traditional RPC inter-
faces (therefore be friendly to legacy applications) as well
as higher performance than both server-reply and server-
bypass. Two design decisions are made for RFP based

3 Figure 6 is tested under 21 client threads connecting to the server.

RNIC

client_send using
RDMA-write

size (31 bits)

RNIC

Client

Request
Buffer

Response
Buffer

CPU core

status (1 bit) size (31 bits)
status (1 bit)

time (16 bits)

Request Header
Response Header

Server Machine

Client Machine

client_recv using
RDMA-read

server_recv server_send

Figure 7. The overview of Remote Fetching Paradigm.

on the above two observations. First, server should pro-
cess the request rather than totally bypassed, so that no
application-specific data structure or redesign is needed.
Second, results should be remotely fetched by the client
through RDMA Read instead of being sent by server, hence
the server only handles in-bound RDMA operations.

3.1 Design Overview
As listed in Table 2, RFP provides an interface that contains
four basic APIs, i.e., client send, client recv, server send,
and server recv, which is similar to the interface provided
by TCP/IP socket. Therefore, RPC mechanisms can be built
on top of RFP by simply replacing the original TCP/IP
socket interface with ours, which is straightforward [2, 6,
34]. As we will discuss later in Section 3.2, there are several
parameters should be manually set before using RFP. But,
since RFP makes the server to handle requests sent from
clients, it does not rely on application-specific data structures
and hence imposes only moderate porting cost.

Figure 7 illustrates how to use RFP. At the bottom of
the figure, clients use client send to send their requests
to server’s memory through RDMA Write and server uses
server recv to get requests from local memory buffers and
then process these requests, which is the same as server-
reply. However, unlike the case with server-reply, server
does not send results back to clients directly after it pro-
cesses the requests. Instead, server send called by server
only writes results into local memory buffers, and it is

6

1 int GET(int server_id, void *key, int key_size, void *value_buf){
2 r_buf=prepare_request(key, key_size, GET_MODE);
3 client_send(s_id, r_buf, sizeof(r_buf));
4 size=client_recv(s_id, value_buf);
5 return size;
6 }

1 int GET(int server_id, void *key, int key_size, void *data_buf){
2 while(true){
3 md=probe_metadata(server_id);
4 while(true){
5 data=get_data(s_id, md, data_buf);
6 if checksum of data_buf is ok:
7 break;
8 }
9 get key_size’ and value_size;
10 if equal(key, key_size, data_buf, key_size’)
11 break;
12 }
13 return value_size;
14 }

(a) Using RFP

(b) Using Server-Bypass

Figure 8. How RFP and server-bypass implement GET for
in-memory key-value stores at client side.

clients’ responsibility to use client recv to remotely fetch re-
sults from server’s memory through in-bound RDMA Read.

In summary, RFP combines the strength of the other two
paradigms, while it also avoids their weakness. Firstly, RFP
relies on server to process the requests, which 1) avoids the
need of designing application-specific data structures, which
means that it can be used to adapt many legacy applications
with only moderate programming cost; 2) also solves the
bypass access amplification problem that we have described
in Section 2.3.

Figure 8 gives an example of using RFP and server-
bypass to implement key-value store’s GET operation. From
Figure 8(b) we see that server-bypass involves more steps:
it requires clients to probe meta-data (line 3), fetch data
from server (line 5), and check data correctness and integrity
through checksum (line 6). Clients have to retry if they find
the data is being modified by server, or if there is a key con-
flict (line 10). In contrast, as shown in Figure 8(a), RFP just
needs clients to send requests and receive results (lines 3⇠4),
which is compatible with server-reply. More importantly, the
complexity of using server-bypass is not only embodied by
the number of steps required. The above special GET pro-
cedure is specifically designed for this certain purpose and
hence cannot be used in other kinds of application.

Second, RFP does not waste server CPU cycles on net-
work operations for sending results, which is different from
the traditional wisdom. Instead, server only writes the re-
sults into local response buffers, but asks clients to remotely
fetch the results. This eliminates the bottleneck of using out-

bound RDMA operations at server side, which brings higher
performance than the other two paradigms.

Since RDMA requires memories used being registered
into RNIC, RFP provides two APIs, malloc buf and free buf
(see Table 2), to allocate and free buffers registered into
RNIC automatically by RFP. Clients and server put mes-
sages directly into request/response memory buffers allo-
cated from malloc buf. The corresponding location informa-
tion for request/response buffers are recorded by both the
server and the client when client registers itself to the server.
Thus, both the server and clients can directly read/write their
exclusive buffers without the need of further synchroniza-
tions. As shown in Figure 7, each buffer has a header to
denote the status (whether the request/response has arrived)
and its size. Moreover, in each response buffer, the header
also contains a two-byte variable time to keep the response
time of server for the corresponding request. This field is
used by clients to better setup the parameters for the RFP
primitives, which will be discussed in the next section.

3.2 Challenges and Solutions
To maximize the throughput of applications, RFP faces two
challenges: 1) when clients should fetch the results from
server to reduce unnecessary RDMA operations; and 2) what
default size clients should use to fetch the results so that in
most cases only one RDMA Read operation is required.

In our implementation, each of these two challenges is
equalized to a parameter selection problem. Thus, in the rest
of this section, we first show how these two challenges are
transferred into parameter selection problems, and then we
present our mechanism to select the optimum parameters.

For the first challenge, a straw-man design is repeatedly
fetching results from server’s response buffers in client recv,
i.e., without any interval between two retries. A similar
method is used in the server side, i.e., the server will repeat-
edly check its request buffer for fetching new requests. It is
obvious that this method can be used to achieve the best la-
tency. However, different from the server that we assume it
should spend all its CPU cycles in request processing, clients
may have other responsibilities such as interacting with the
user. As a result, this simple straw-man design may not be
optimal as it leads to higher CPU consumption at client side
and waste server’s in-bound IOPS, especially when the av-
erage number of retries is large. RFP therefore uses a hy-
brid mechanism to achieve a good trade-off among latency,
throughput, and clients’ CPU consumption. The mechanism
starts from using repeated remote fetching and then auto-
matically switches to server-reply if it detects the number
of retires is larger than a certain threshold R. When the
number of retries is less than (or equal to) R, RFP uses
repeated remote fetching to provide higher throughput and
lower latency. Otherwise, repeated remote fetching brings
little throughput improvement compared with server-reply,
and RFP switches to server-reply to save CPU consumption

7

 0

 2

 4

 6

 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
h

ro
u

g
h

p
u

t
(M

O
P

S
)

Server Process Time (µs)

Repeated Remote Fetching
Server-Reply

Figure 9. The throughput difference between repeated re-
mote fetching and server-reply under different server pro-
cess time (P). F and S are all 1 byte for this test.

of clients. R is the parameter for the first challenge and its
selection will be discussed later.

For the second challenge, different RPC calls generate
different size of results and it is impossible to generally pre-
dict the size beforehand. RFP asks server to fill a result size
of every RPC call in its response memory buffers for clients
to fetch, as shown in Figure 7. However, it is expensive if a
separated RDMA Read is always needed to fetch the result
size before getting the data, which wastes half of the RNIC’s
IOPS resource. To mitigate this problem, we store the re-
sult continuously after the header in the response buffer, and
we set a default fetching size (denoted as F) for each client.
A client will fetch both the response header and the pay-
load data from server’s memory with one RDMA operation
when F is not less than the total response size.Only if the
real result size is larger than the fetching size, does the client
need to issue another RDMA Read to fetch the remaining
data. This mechanism greatly reduces the average number
of RDMA operations used for an RPC call, especially when
the size of result is usually small. F is the parameter for the
second challenge.

Parameter Selection. With R and F , we model the two
challenges together as a parameter selection problem: The
selection of R and F plays an important role on the through-
put for upper-layer applications. In RFP, the throughput T is
determined by the following form:

T = argmax

R,F
f(R,F, P, S) (1)

As we can see from the equation, the throughput (T) of
an RFP application is related to four factors:

• R - the retrying number of RDMA Read from clients
before it switches to server-reply mode;

• F - the fetching size used by the clients to read remote
results from server;

• P - the process time for requests on server;
• S - the RPC call result sizes.

Among these factors, P and S are related to applications
only, while R and F are related to both applications and the

RDMA hardware. We therefore start by understanding how
R and F are related to the given hardware capabilities. Later
on, we discuss how to determine the best R and F so as
to achieve great application throughput by connecting them
with P and S, i.e., application characteristics.

For designing a mechanism that can automatically choose
the best R and F for an application, we investigate the
impact of modulating these two parameters separately and
observe that it is complicated to use an equation to describe
their relations and hence, it is hard to directly calculate the
optimum results. However, an enumeration-based method is
enough to solve the optimization problem, as, surprisingly,
we find that the possible range of optimum R and F is
limited.

First, Figure 9 shows the throughput of repeated remote
fetching and server-reply when the server process time of the
requests varies, with both F and S setting to 1 byte so that
only one RDMA Read operation is required for fetching the
result. The throughput (MOPS) is therefore the upper-bound
of T for every P , no matter how F and S change. This is
because: (i). making F and S not equal to each other leads to
either additional RDMA operations required (when F < S),
or no benefit at all but only bandwidth waste (when F > S);
(ii). when F (and S) increases, throughput will only drop.

Given this upper-bound curve over P for all possible F
and S, we can have an upper bound of R, i.e., R should
be within [1,N], where N is the upper-bound number of
RDMA Read retries. If R > N , the throughput improve-
ment of repeated remote fetching is limited while it con-
sumes more clients’ CPU resources than server-reply. The
setting of N depends on the hardware configurations (sim-
ilar to Figure 9) as well as developers’ inputs about their
expectations on trade-off between throughput improvement
and CPU consumption of clients. In this case, we choose
N to be 5, which is mapped to the point whose P is 7, ac-
cording to the curve above. This is because the throughput
of repeated remote fetching is not significantly larger than
server-reply when P � 7µs (within 10%), while the client
may spend more than twice the CPU consumption.

Second, Figure 5 presents the IOPS of RNIC under differ-
ent data size. The curve in the figure, presenting the relation-
ship between IOPS and data size, can be divided into three
ranges: [1,L), [L,H], and (H ,1). Data size smaller than L
(in the first range) does not increase the throughput, due to
the startup overhead of data transmission in the RNIC. Data
size larger than H also does not increase the throughput, as
bandwidth becomes bottleneck at this time and throughout
decreases linearly with the size increasing. Thus, F must be
in the second range [L,H]. L and H rely on hardware con-
figuration, and can be gotten by running benchmark once
(similar to Figure 5). For example, in our RNIC (InfiniBand)
configurations, L is 256 bytes and H is 1024 bytes.

Based on the above observations, the selection of R and
F is limited in [1, N] and [L,H] respectively, which means

8

that only (H � L) ⇤N pairs of candidates are needed to be
considered. More importantly, both N and H � L are small
enough for an simple enumeration. As a result, RFP uses an
enumeration-based method to decide best R and F , in which
the following equation is used for comparison:

T =

MX

i=1

Ti, where Ti =

⇢
IR,F F � Si

IR,F /2 F < Si
(2)

Specifically, for each result of an application, RFP cal-
culates the throughput for it (Ti). The calculation of Ti de-
pends on the fetching size (F), the result size (Si), and the
IOPS of the RNIC under R and F (IR,F): if F � Si, Ti

is IR,F ; if F < Si, Ti is half of IR,F as two RDMA oper-
ations are used to fetch the whole result. IR,F is tested by
running benchmarks only once. RFP enumerates all pos-
sible candidates, and chooses the F and R that maximize
the throughput (T) for all M results as the optimum param-
eters for the application. The M results of the application
can be collected by pre-running it for a certain time or sam-
pling periodically during its run. The selection complexity is
O((H � L)NM).

Discussion. There are two more details for implement-
ing the hybrid mechanism to switch between repeated re-
mote fetching and server-reply. First, both client and server
maintain a mode flag for each pair of hclient id, RPC idi,
which designates the current paradigm in usage. This flag
can only be modified by the corresponding client (by a local
write to the local flag and an RDMA-write to server’s flag),
and server gets to know the current paradigm by checking
its local mode flag. Initially, the flag is set to repeated re-
mote fetching and hence client will continuously fetch re-
sults from server. If the number of failed retries becomes
larger than R, client will update the mode flag (both local
and remote) to server-reply and switch itself to server-reply,
i.e., waiting until the result is sent from server. In contrast,
if client is currently in server-reply, it will record the last re-
sponse time and switch back to repeated remote fetching if
it finds the response time becomes shorter. RFP records the
response time for completing the request in the header of the
response buffer (see Figure 7), which will be gotten by client
through RDMA-read.

Second, some requests with unexpectedly long server
process time may cause unnecessary switch between re-
peated remote fetching and server-reply. To avoid this phe-
nomenon, RFP only switches to server-reply if it finds a pre-
defined number (e.g., two) of continuous RPC calls suffer
from 5 failed retries of remote fetching. Otherwise, RFP re-
mains in repeated remote fetching mode. According to the
evaluation in Section 4.4.2, only 0.2% of the requests have
unexpectedly long process time for applications. Thus, it is
quite rare that two (or more) continuous RPC calls suffer
from unexpectedly long process time.

4. Evaluation
Our evaluation answers the following questions:

• How much is the porting cost of using RFP?
• How much does RFP outperform server-reply and

server-bypass?
• How does RFP perform under different workloads?

4.1 An RFP-Based Application
To evaluate how applications can easily and effectively use
RFP, we implement Jakiro, an RFP-based in-memory key-
value store. Jakiro contains two main modules: the commu-
nication protocol that uses RFP for RPC calls, and the in-
memory key-value structure that keeps key-value pairs.

Communication Protocol. In Jakiro, the server exports
RPC interfaces (i.e., PUT and GET) for clients to operate
key-value pairs. The process follows strictly the traditional
RPC practice: clients invoke RPC call stubs, which further
uses RFP primitives to send the data to server. The server
invokes RPC reply stubs, which stores the response in mem-
ory, waits for clients to fetch it, or transmits it to clients
when RFP is switched to server-reply mode automatically.
While the internal implementation is quite different, Jakiro
uses RFP as it was a common RPC library.

In-Memory Key-Value Structure. We currently build
Jakiro by caching key-value pairs in memory for the other
applications (similar to Memcached [21]). The in-memory
structure contains a number of buckets, each of which con-
tains eight slots 4. A slot is used to keep the information of
a key-value pair (such as the memory address that is keep-
ing the pair). When a bucket is full, we use a strict LRU
(Least Recently Used) policy for slot eviction in this bucket.
The whole structure is partitioned across different server
threads in Exclusive Read Exclusive Write (EREW) [18].
Each server thread only accesses its own data partition. As
proved in previous work of [11, 18, 22], such design is able
to provide high performance for processing key-value pairs.

We implement Jakiro in about 3,000 lines of C++ code.
The underlying libraries used for RDMA transferring in RFP
are rdmacm and ibverbs provided by Mellanox OpenFabrics
Enterprise Distribution [20]. In Jakiro, both the server and
the client threads directly poll the memory buffers and the
RNICs for message sending/receiving events. Meanwhile,
each server thread does all the work of message packing/un-
packing, sending/receiving, as well as request processing.

4.2 Experiment Setup
We use a cluster based on InfiniBand for the evaluation. The
cluster contains eight machines, each of which is equipped
with dual 8-core CPUs (Intel Xeon E5-2640 v2, 2.0 GHz),
96 GB memory space, and a Mellanox ConnectX-3 Infini-
Band NIC (MT27500, 40 Gbps). All of these machines are

4 Each slot is 8-byte so that a bucket fills in a cacheline.

9

connected by an 18-port Mellanox InfiniScale-IV switch.
The machines run MLNX-OFED-LINUX-2.3-2.0.0 driver
provided by Mellanox for Ubuntu 14.04 [20].

Workloads. Unless explicitly specified, we choose key-
value pairs with 16-byte key and 32-byte value. This is
aligned with the real-world workloads for in-memory key-
value store: according to the analysis of previous works
[1, 11, 26, 35], the value size of more than half of key-
value pairs in Facebook’s data center is around 20 bytes.
Firstly, we present results on uniformly distributed and read-
intensive workloads (95% GET) in Sections 4.4.1 and 4.4.2.
Then we provide the experimental results on skewed work-
load, write-intensive workload, and workload with different
value size respectively in Section 4.4.3. We use YCSB [3] to
uniformly generate 128 million key-value pairs off-line for
the experiment. The skewed workload is generated accord-
ing to Zipf distribution with parameter .99. For workloads
with 32-byte value-size, we pre-run such workloads and se-
lect R (RDMA-read retrying number) as 5 and F (fetching
size) as 256 bytes.

Comparison. We firstly compare Jakiro with Pilaf [23]
that adopts server-bypass in Section 4.3. In Section 4.4, we
compare Jakiro with two in-memory key-value systems that
use server-reply. The first system is ServerReply, which is
extended from Jakiro and differs from Jakiro in that the
server thread directly sends the result back to the client
thread through RDMA Write. The other system is RDMA-
based Memcached (denoted as RDMA-Memcached), which
is developed by OSU [10]. In RDMA-Memcached, the
server thread sends status or notification information to the
client thread after it processes the requests, and the client
thread relies on the information to do further RDMA opera-
tions. We run RDMA-Memcached in memory mode without
interacting with the underlying persistent storage. We use
one machine as the server machine and other 7 machines as
the client machines to run Jakiro, ServerReply, and RDMA-
Memcached. Five threads are launched in each client ma-
chine (35 client threads in total), which are enough to satu-
rate the server’s RNIC.

4.3 Comparison with Server-Bypass

As mentioned before, server-bypass sometimes cannot
achieve good performance as expected, due to bypass ac-
cess amplification. Pilaf [23] is a state-of-the-art in-memory
key-value store using server-bypass. In Pilaf, even with a
specific-design memory-efficient 3-way Cuckoo hash table,
client still needs 3.2 RDMA-read operations in average to
complete a GET request. Specifically, these 3.2 lookups in-
clude the round trips used for 1) finding where the key-value
pair is stored in server; and 2) transforming the real data to
client. It does not include the process for addressing colli-
sions, so that the number can be even bigger if the chance
of collision is high (a write-intense workload rather than the
read-intense one tested by Pilaf). Thus, in theory, the peak
throughput of Pilaf in the experimental cluster we use is only

 0

 2

 4

 6

 8

7 14 21 28 35 42 49 56 63 70

T
h
ro

u
g
h
p
u
t
(M

O
P

S
)

Number of Client Threads

Figure 10. Throughput of Jakiro under different number of
client threads. The server thread number is 6 and the value
size is 32 bytes. The workload is uniform and read-intensive
(95% GET).

 0

 2

 4

 6

 8

32 64 128 256

T
hr

ou
gh

pu
t (

M
O

P
S

)

Value Size (Bytes)

Pilaf
Jakiro

Figure 11. Peak throughput of Jakiro and Pilaf under uni-
form workload with 50% GET. The throughput of Jakiro is
4⇥ as high as Pilaf’s on value size from 32 to 256 bytes.

3.5 MOPS for uniform and read-intensive workload (95%
GET). As displayed in Figure 10, the peak throughput of
Jakiro that adopts RFP reaches 5.5 MOPS, which is 57.14%
higher than Pilaf’s5.

In contrast, the peak throughput of Jakiro (achieved with
35 client threads) is half of the peak in-bound RDMA IOPS
of this server’s RNIC (11.2 MOPS, as illustrated in Fig-
ure 3). A closer look reveals that thanks to the fetch-size de-
cision mechanism in RFP, only 2.005 round-trips on average
are needed in Jakiro to successfully complete a key-value
RPC call: one is to send the request through RDMA-write
and the other 1.005 is to fetch the result through RDMA-
read, making almost no waste of the fetch operations for
RPC results. When the number of client threads further in-
creases, throughput of Jakiro decreases slightly (see Fig-
ure 10). This is because when each client machine launches
more client threads, the out-bound IOPS of its RNIC reaches
its upper limit. In this experiment, we tested two kinds of set-
tings: 1) one is fixing the number of client threads and hence
each data point is measured separately; 2) the other is dy-
namically adding and reducing the number of client threads.
Results show that the measured throughput is not affected by

5 Since the code of Pilaf is not available, we directly compare with the
number reported in its paper. The platform we used to test Jakiro is the
same as the environment reported by Pilaf.

10

 0

 2

 4

 6

 8

1 2 4 6 8 10 12 14 16

T
h
ro

u
g

h
p

u
t
(M

O
P

S
)

Number of Server Threads

ServerReply
RDMA-Memcached

Jakiro

Figure 12. Throughput of Jakiro, ServerReply, and
RDMA-Memcached on 32-byte value size. Jakiro out-
performs ServerReply and RDMA-Memcached by about
160%⇠310% in throughput.

the setting used, which show that the overhead of adding/re-
ducing clients in Jakiro is minimal.

Moreover, a client in server-bypass needs more RDMA
operations to complete a request when the conflicts are
heavy. As shown in Figure 11, the peak throughput of Pilaf
under uniform workload with 50% GET is only 1.3 MOPS.
The experimental RNICs for Pilaf are 20 Gbps Mellanox In-
finiBand NICs [23]. We also run Jakiro in a cluster of six
machines equipped with 20 Gbps Mellanox Infiniband NICs,
under uniform and 50%-GET workload. The peak through-
put of Jakiro on values from 32 bytes to 256 bytes is about
5.4 MOPS, which is 4⇥ as high as that of Pilaf.

4.4 Comparison with Server-Reply

In this section, we compare RFP with server-reply and show
the performance improvement brought by RFP.

4.4.1 Comparison on Throughput
As shown in Figure 12, the peak throughput of Jakiro on 32-
byte value is 5.5 MOPS. It is about 158% higher than that of
ServerReply (2.1 MOPS) and about 310% higher than that
of RDMA-Memcached (1.3 MOPS) respectively. Although
ServerReply also requires only two round-trips to complete
an RPC call (one is to send the request by the client thread
and the other is to reply by the server), its peak throughput on
key-value pairs is limited by the RNIC’s out-bound RDMA
IOPS (2.1 MOPS). Moreover, when the number of server
threads increases (larger than 6), the throughput of Server-
Reply decreases, due to the poor scalability of the RNIC’s
out-bound RDMA operations. In contrast, the server thread
in Jakiro does not have to spend cycles on network commu-
nication. Therefore, launching more than 2 server threads is
enough to serve requests when the server’s RNIC is saturated
by the clients, and the peak throughput of Jakiro remains 5.5
MOPS in this case (see Figure 12).

From Figure 12 we see RDMA-Memcached is bounded
by the utilization of CPU rather than RNIC, and increasing
the number of server threads improves its throughput. How-
ever, even 16 server threads of RDMA-Memcached still can-
not saturate the RNIC’s out-bound capacity, which brings

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 0 10 20 30 40 50 60

Latency (µs)

Jakiro
ServerReply

RDMA-Memcached

Figure 13. CDF of latency of Jakiro, ServerReply, and
RDMA-Memcached on value size of 32 bytes.

lower peak throughput than ServerReply. This is because a
server thread of RDMA-Memcached has to coordinate with
other threads for sharing data structures (e.g, LRU lists) as
well as to perform network operations, which does not ex-
hibit good scalability [5, 16, 23]. By using data partition,
a server thread in ServerReply does not need to interact
with other threads, so ServerReply is only limited by out-
bound RDMA operations. Moreover, as the server thread in
RDMA-Memcached fully uses a CPU core, launching more
than 16 server threads will only reduce the throughput as all
cores are already saturated.

4.4.2 Comparison on Latency
The average latency of Jakiro on key-value pairs with 32-
byte value is 5.78 µs. It beats ServerReply’s average latency
(12.06 µs) by 108% and RDMA-Memcached’s average la-
tency (14.76 µs) by 155%. Figure 13 illustrates the cumula-
tive probability distribution of latency of the three systems
when all of them achieve peak throughput with the uniform
and read-intensive workload. We see that ServerReply has
lower 15-percentile latency than Jakiro. This is caused by
the following: (1) a single RDMA-write has lower latency
than a single RDMA-read, as RDMA-write needs less state
and operations than RDMA-read in the RNIC. Such phe-
nomenon also has been observed in HERD [11] and RDMA-
PVFS [33]; (2) server sends back the result to client immedi-
ately in ServerReply, while in Jakiro it has to (possibly) pay
an extra delay before clients come to fetch the result.

However, as the RNIC has limitation on out-bound
RDMA, ServerReply imposes higher latency (e.g., 50-
percentile latency or 99-percentile latency) than Jakiro when
more operations are observed. In Jakiro, about 99% RPC
calls are below 7 µs, which is significantly better than
ServerReply and RDMA-Memcached. Moreover, all the
three RDMA-based systems suffer from the long-tail latency
issue, while the one from Jakiro is shortest.

Additionally, our auto-switch mechanism balances la-
tency and throughput. For Jakiro, some RPC calls suffer
higher latency (15⇠17 µs) because they have to go through
more round-trips (4-8) for request sending and result fetch-
ing. However, the RPC calls that need more than 2 round-
trips to complete only account for a small proportion (0.2%)

11

 0

 2

 4

 6

 8

1 2 3 4 5 6 7 8 9 10 11 12

T
h

ro
u

g
h

p
u

t
(M

O
P

S
)

Request Process Time (µs)

Jakiro
ServerReply

Jakiro w/o Switch

Figure 14. Throughput of Jakiro and ServerReply under
different request process time at server side. Jakiro and
ServerReply have comparable performance when the request
process time becomes larger, as RFP automatically switches
to server-reply.

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10 11 12

C
P

U
 U

til
iz

at
io

n
(%

)

Request Process Time (µs)

Figure 15. The client CPU utilization in Jakiro under dif-
ferent request process time at server side.

and no two continuous calls suffer from 5 RDMA-read re-
tries to fetch the result. Developers using RFP can avoid
unnecessary switch between repeated remote fetching and
server-reply to balance throughput and latency, by configur-
ing how many contiguous RPCs that exceed the switch point
should happen before a real switch happens. In this case,
Jakiro achieves 5.5 MOPS peak throughput as well as hav-
ing a low latency.

Figure 14 displays the performance of Jakiro and Server-
Reply under different request process time (using 16 server
threads and 35 client threads). We mimic the processing pro-
cedure with a for loop, so that we can exactly control the
process time by using the RDTSC instruction. As we see
from the figure, when the request process time is less than 7
µs, repeated remote fetching with 5 times is enough to suc-
cessfully fetch the result back in RFP. Thus, the throughput
of Jakiro is about 30%⇠320% higher than that of Server-
Reply. ServerReply is still bounded by out-bound RDMA
of the server’s RNIC in this case. When the request pro-
cess time is larger than or equal to 7 µs, the performance of
Jakiro mainly depends on the server load instead of the per-
formance asymmetry in the RNIC. Under this circumstance,
repeated remote fetching does not increase the performance
and RFP switches to server-reply after 5 failed retries in two
continuous RPC calls with our current hardware configura-
tion. Jakiro and ServerReply have comparable performance

 0

 2

 4

 6

 8

95% 50% 5%

T
hr

ou
gh

pu
t (

M
O

P
S

)

GET Percentage

Jakiro
ServerReply

RDMA-Memcached

Figure 16. Comparison under varying GET percentages
(32-byte value size). Jakiro achieves peak throughput at
5.5 MOPS under 5%, 50%, and 95% GET percentages,
and significantly outperforms ServerReply and RDMA-
Memcached.

 0

 2

 4

 6

 8

32 64 128 256 512 1024 2048 4096 8192

T
h

ro
u

g
h

p
u

t
(M

O
P

S
)

Value Size (Bytes)

Jakiro
ServerReply

RDMA-Memcached

Figure 17. Comparison under varying value size. The work-
load is uniform with 95% GET.

when the request process time (i.e., server load) becomes
larger, as both of them require more server resources at this
time. Therefore, RFP achieves good performance for appli-
cations under different server loads.

In Figure 15, we show the corresponding client CPU
utilization in Jakiro on different server loads. As we can see
from the figure, the client CPU is always 100% used under
the RFP mode, which is necessary for achieving the best
latency. In contrast, if the request process time is long, Jakiro
automatically switches to the server-reply mode for reducing
clients’ CPU utilization. Then the client CPU utilization
drops from 100% to below 30%.

4.4.3 Comparison under Different Workloads
We also compare the three systems under different types of
workloads (varying GET percentage, varying value size, and
skewed workload). The experiment for the three systems is
run at the configurations in which each of them achieves
peak throughput on value size of 32 bytes in uniform and
read-intensive (95% GET) workload, as presented in Sec-
tion 4.4.1. For both Jakiro and ServerReply, the configura-
tion is 6 server threads connecting to 35 client threads. For
RDMA-Memcached, the configuration is 16 server threads
connecting to 35 client threads.

Varying GET Percentage. Figure 16 illustrates the
throughput on 32-byte value size of Jakiro, ServerReply,
and RDMA-Memcached under different GET percentages

12

with uniform workload. Jakiro still fully uses the RNIC’s
in-bound IOPS to obtain peak throughput at 5.5 MOPS
under varying GET percentages. As the server threads in
Jakiro are (mostly) not performing networking operations,
their computing capacity is enough to process RPC calls
whether they are GET or PUT. That is why the peak through-
put of Jakiro reaches 5.5 MOPS even when the work-
load is write-intensive (95% PUT). Such throughput is still
about 160% higher than that of ServerReply, which saturates
server RNIC’s out-bound RDMA-write performance (2.1
MOPS) under GET percentages from 95% to 5%. However,
as shown in Figure 16, RDMA-Memcached is limited by the
CPU utilization6, and has decreased throughput when the
workloads become write-intensive. In workload with 95%
PUT, Jakiro improves the throughput by 14⇥ compared with
that of RDMA-Memcached.

Varying Value Size. Figure 17 presents the throughput
of Jakiro, ServerReply, and RDMA-Memcached on value
size from 32 bytes to 8,192 bytes. Through pre-running
such workload, RFP sets the fetching size as 640 bytes for
Jakiro, keeping R as 5. As seen in this figure, Jakiro signifi-
cantly outperforms ServerReply and RDMA-Memcached by
60%⇠280% on value size from 32 bytes to 2048 bytes. For
ServerReply, when the value size becomes larger, the server
thread has to spend more time in sending the result through
out-bound RDMA-write for a GET RPC call. Therefore,
its throughput decreases due to wasting more CPU cycles
on networking operations. Increasing the number of server
threads helps mitigate the issue for ServerReply on larger
value size. For example, when the server thread number is
increased to 12, ServerReply achieves about 2.1 MOPS for
key-value pairs with value size of 512 bytes. However, as
shown in Figure 12, it is at the expense of reducing through-
put on smaller value size (e.g., 32 bytes or 64 bytes). When
the value size grows to 4096 bytes, the throughput of Jakiro,
ServerReply, and RDMA-Memcached are comparable. This
is because both ServerReply and RDMA-Memcached satu-
rate the network’s bandwidth at this time.

The size of value is fixed in the above experiments.
To evaluate the performance with variable value size, we
also test the three systems under a read-intensive workload
in which the value size of key-value pairs uniformly dis-
tribute between 32 bytes and 8,192 bytes. In this case, Jakiro
achieves 3.58 MOPS, about 140% and 251% higher than that
of ServerReply (1.49 MPOS) and RDMA-Memcached (1.02
MOPS), respectively.

Figure 18 shows the throughput of Jakiro under different
fetching size. We observe that 640-byte can achieve a good
throughput for a wide range of value size (from 32 bytes
to 640 bytes), even though the throughput for smaller value
size decreases slightly compared with smaller fetching size
(e.g., 256 or 512 bytes). Further increasing the fetching size

6 The CPU utilization consists of computing, accessing memory, and per-
forming network operations.

 0

 2

 4

 6

 8

32 64 128 256 384 512 640 768 1024 2048

T
h
ro

u
g
h
p
u
t
(M

O
P

S
)

Value Size (Bytes)

F: 256 Bytes
F: 512 Bytes
F: 640 Bytes

F: 748 Bytes
F: 1024 Bytes

Figure 18. Throughput of Jakiro under different fetching
size (F). The workload is uniform with 95% GET. RFP
calculates 640 bytes as the optimum F (keeping R as 5),
which helps Jakiro achieve the best throughput for the given
workload.

 0

 2

 4

 6

 8

95% 50% 5%

T
hr

ou
gh

pu
t (

M
O

P
S

)

GET Percentage

Jakiro
ServerReply

RDMA-Memcached

Figure 19. Comparison under skewed workload on 32-byte
value size. Jakiro still outperforms ServerReply and RDMA-
Memcached under skewed workload.

(e.g., 748 bytes) just lowers the performance of Jakiro in
average due to network resource wasting. Using 1024-byte
fetching size produces the lowest performance for Jakiro, as
the bandwidth becomes the bottleneck.

Skewed Workload. We test how Jakiro perform in a
skewed workload. The keys in the workload are generated
according to a Zipf distribution with parameter .99. Fig-
ure 19 presents the throughput of Jakiro, ServerReply, and
RDMA-Memcached on value size of 32 bytes under dif-
ferent GET percentages. Although the most popular key is
about 10

5 times more often than the average key in the
skewed workload, the load of the most loaded server thread
is <25% more than that of the thread with the least load
[11], in the case of launching six server threads. Even un-
der skewed workload, the server threads in Jakiro are able to
process key-value requests when the server’s RNIC is satu-
rated. Thus, the peak throughput of Jakiro is still 5.5 MOPS
under 5%, 50%, and 95% GET percentages. According to
Figure 20, Jakiro also performs best in average latency (we
use the read-intensive workload as an example). ServerReply
is still limited by the RNIC’s out-bound RDMA-write, and
obtains 2.1 MOPS for the skewed workload. As mentioned
in Section 4.4.1, the RDMA-Memcached is bounded by the
CPU at the server side. Under skewed workload, RDMA-
Memcached benefits from serving the popular keys as this

13

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 0 10 20 30 40 50 60

Latency (µs)

Jakiro
ServerReply

RDMA-Memcached

Figure 20. CDF of latency of Jakiro, ServerReply, and
RDMA-Memcached on read-intensive skewed workload.

makes use of cache locality [30]. As a result, the throughput
of RDMA-Memcached in this case is higher than that un-
der uniform workload. For example, as shown in Figure 19,
RDMA-Memcached achieves about 2.1 MOPS on value size
of 32 bytes with 95% GET, which saturates the RNIC’s
capacity for out-bound RDMA. Overall, Jakiro beats both
ServerReply and RDMA-Memcached under workload with
skewed distribution.

Number of Retries in Jakiro. At last we show the num-
ber of retries in Jakiro under different workloads in Table 3.
We see that the percentage of requests that need 2 retries to
fetch results to clients is around 0.1% in all four workloads.
In some extreme case, the number of retries can occasion-
ally be as large as 9. But, according to our evaluation, this
kind of occasional case never repeatedly appears. As a re-
sult, there will not be an unnecessary switch between RFP
and server-reply (as discussed in Section 3.2).

4.5 Applicability and Limitations
Since Jakiro will automatically switch to server-reply when
necessary, it can achieve good performance on various types
of workloads. In contrast, as we have shown in prior evalua-
tion results, RFP itself is only beneficial for a certain range
of workloads.

First, as illustrated in Figure 5, there is no asymmetry be-
tween in-bound and out-bound RDMA if the size of each
packet is larger than 2 KB, because bandwidth rather than
IOPS becomes the bottleneck. As a result, RFP can only im-
prove IOPS for small packets. Second, if the process time of
a request is longer than 7 µs, using RFP does not improve
throughput but increases client CPU utilization (as shown
in Figure 14). However, as reported by recent investigations
[1, 11, 26, 35], most applications in modern data centers
transfer small packets. In this case, RFP is better than exist-
ing methods for applications that 1) have an extremely high
throughput (Figure 11 and Figure 12); and 2) are latency-
sensitive (Figure 13 and Figure 20).

Moreover, since it is impossible to make both clients
and servers handle only in-bound RDMA operations, our
choice in RFP is “servers handle only in-bound RDMA
while clients still use out-bound RDMA”. This setting takes
advantage from the asymmetry and hence can achieve a bet-

Uniform Skewed
95% GET 5% GET 95% GET 5% GET

Percentage of N > 1 0.105% 0.13% 0.09% 0.09%
The largest N 6 5 9 4

Table 3. Number of retries (N) in Jakiro under different
workloads (using 32-byte value).

ter aggregated throughput if the number of clients is higher
than the number of servers.

5. Related Work
Different Queue Pair Types. There are three kinds of queue
pair types that can be used to support RDMA. RFP, like
all the server-bypass solutions, requires the use of Reliable
Connection (RC), because it is the only queue pair type
that supports both one-sided RDMA-Read and RDMA-Write.
The other two kinds of queue pair types, i.e., Unreliable
Connection (UC) and Unreliable Datagram (UD), provide
only unreliable transport services, so that there is not any
guarantee that the messages are received by the other side:
corrupted and silently dropped are both possible. Moreover,
they only support limited APIs (UC does not support RDMA-
Read, while UD neither supports RDMA-Read nor RDMA-
Write), which prohibits users from relieving server from
handling packets.

There are some works that build key-value stores upon
UD and UC, such as HERD [11] and FaSST [12], which may
achieve higher performance than RC-based solutions. This
is reasonable because the reliable-guaranteeing mechanism
itself imposes certain overhead, but it is at a cost of requir-
ing the applications to handle many subtle problems, such
as message lost, reorder and duplication. Considering the fa-
tal outcome, even if such subtle problems rarely happen in
the real-world [12], they cannot be simply ignored. More-
over, as these UD and UC based methods require server to
send results back to clients, the consumed server CPU cycles
may become a bottleneck when the IOPS is extremely high.
Figure 13 and 20 also demonstrate that Jakiro achieves bet-
ter latency so that RFP is more suitable for latency-sensitive
applications. Anuj et al. [13] also present a guideline of us-
ing RDMA, which provides many useful optimization tech-
niques. However, the main techniques the paper presents,
such as Doorbell batching, can only be used for UD-based
solutions. The other techniques that related to the hardware
are orthogonal to our paradigm, so they can be used to fur-
ther improve RFP’s performance.

Different Paradigms. Other existing RDMA-based so-
lutions usually apply server-reply [7, 9, 10, 28, 31, 33, 34],
server-bypass [4, 30, 32], or a combination of these two
paradigms [23, 24]. As we have demonstrated in Section 4,
RFP can be faster than these two traditional paradigms, as
it 1) uses only in-bound RDMA in the server side; and 2)
avoids the “bypass access amplification” problem. In those
server-bypass-based applications, multiple RDMA opera-

14

tions (3⇠6) are usually needed to complete a request [23],
which number can be even higher when conflicts from mul-
tiple clients are heavy.

RFP also involve only moderate migration overhead for
those legacy applications that use RPC, because it does not
require any application-specific data structures to be feasi-
ble. In contrast, Pilaf and C-Hint have to propose solutions
to reason about data consistency [23, 30]. DrTM relies on
explicit locks and high-performance HTM for data race co-
ordination [32].

FaRM [4] is also a memory distributed computing plat-
form that adopts server-bypass. It is reported to be able to
perform 167 million key-value lookups per second with 20
machines (i.e., about 8M requests per second per server),
which is larger than Jakiro. Nevertheless, in order to achieve
this performance, FaRM uses Hopscotch hashing that leads
to something like “batching the requests”. With FaRM, a
client needs to fetch N ⇤ (Sk + Sv) data to get a single key-
value pair, where N is usually larger than 6, Sk and Sv are
the size of key and value respectively. As a result, 1) the av-
erage latency for FaRM to get key-value pairs with 16-byte
key and 32-byte value is 35µs, which is about 5⇥ higher
than that of Jakiro; and 2) a lot of the bandwidth and MOPS
will be wasted if only a few data in the N fetched key-value
pairs are used.

Moreover, it has to be mentioned that to Pilaf, C-Hint, and
FaRM, all of them use server-reply to serve PUT requests. In
this case, these systems suffer from the limited performance
of server’s out-bound RDMA.

6. Conclusion
This paper proposes a new RDMA-based paradigm named
RFP, which supports traditional RPC interfaces as well as
providing high performance. The design of RFP is based
on two observations: the first is performance asymmetry in
RNIC and the second is performance degradation due to con-
flicts resolving in server-bypass. By making server involved
in request processing, RFP is able to support traditional RPC
interface based applications. By counter-intuitively making
clients fetch results from server’s memory remotely, RFP
makes good usage of server’s in-bound RDMA and thus
achieves higher performance. Experiments show 1.6⇥⇠4⇥
improvement of RFP over server-reply and server-bypass.
We believe RFP can be integrated into many RPC-based sys-
tems to improve their performance without much effort.

Acknowledgments
We thank our shepherd Prof. Marco Canini and the anony-
mous reviewers for their valuable feedback. We also want
to take this opportunity to thank Changqing Li, Gaofeng
Feng, and other developers from Mellanox Technologies that
kindly answered our questions and discussed with us. This
work is supported by National Key Research & Develop-
ment Program of China (2016YFB1000504), National Basic

Research (973) Program of China (2014CB340402), Nat-
ural Science Foundation of China (61433008, 61373145,
61572280, 61133004, 61502019, U1435216). Contact:
Kang Chen (chenkang@tsinghua. edu.cn) and Yongwei Wu
(wuyw@tsinghua.edu.cn).

References
[1] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and

M. Paleczny. Workload analysis of a large-scale key-value
store. In ACM SIGMETRICS Performance Evaluation Review,
volume 40, pages 53–64. ACM, 2012.

[2] A. D. Birrell and B. J. Nelson. Implementing remote proce-
dure calls. ACM Transactions on Computer Systems (TOCS),
2(1):39–59, 1984.

[3] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with YCSB.
In Proceedings of the ACM Symposium on Cloud Computing
(SoCC), pages 143–154. ACM, 2010.

[4] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro.
Farm: Fast remote memory. In Proceedings of the USENIX
Conference on Networked Systems Design and Implementa-
tion (NSDI), pages 401–414, 2014.

[5] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3: Compact
and concurrent Memcache with dumber caching and smarter
hashing. In Proceedings of the USENIX Conference on Net-
worked Systems Design and Implementation (NSDI), pages
371–384, 2013.

[6] gRPC. https://github.com/grpc/grpc.
[7] J. Huang, X. Ouyang, J. Jose, M. Wasi-ur Rahman, H. Wang,

M. Luo, H. Subramoni, C. Murthy, and D. K. Panda. High-
performance design of HBase with RDMA over InfiniBand.
In Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS), pages 774–785. IEEE, 2012.

[8] InfiniBand in Data-Centers. http://www.mellanox.com/pdf/
whitepapers/InfiniBand EDS.pdf.

[9] N. S. Islam, M. Rahman, J. Jose, R. Rajachandrasekar,
H. Wang, H. Subramoni, C. Murthy, and D. K. Panda. High
performance RDMA-based design of HDFS over InfiniBand.
In Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis (SC),
pages 35:1–35:35. IEEE Computer Society Press, 2012.

[10] J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang, M. Wasi-
ur Rahman, N. S. Islam, X. Ouyang, H. Wang, S. Sur, et al.
Memcached design on high performance RDMA capable in-
terconnects. In Proceedings of the International Conference
on Parallel Processing (ICPP), pages 743–752. IEEE, 2011.

[11] A. Kalia, M. Kaminsky, and D. G. Andersen. Using RDMA
efficiently for key-value services. In Proceedings of the ACM
Conference on SIGCOMM, pages 295–306. ACM, 2014.

[12] A. Kalia, M. Kaminsky, and D. G. Andersen. FaSST: Fast,
scalable and simple distributed transactions with two-sided
(RDMA) datagram RPCs. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation
(OSDI), pages 185–201, 2016.

[13] A. Kalia, M. Kaminsky, and D. G. Andersen. Design guide-
lines for high performance RDMA systems. In Proceedings of

15

the USENIX Annual Technical Conference (ATC), pages 437–
450, 2016.

[14] C. Lee, S. J. Park, A. Kejriwal, S. Matsushita, and J. Ouster-
hout. Implementing linearizability at large scale and low la-
tency. In Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), pages 71–86. ACM, 2015.

[15] H. Li, A. Kadav, E. Kruus, and C. Ungureanu. MALT: Dis-
tributed data-parallelism for existing ML applications. In Pro-
ceedings of the European Conference on Computer Systems
(EuroSys), pages 3:1–3:16. ACM, 2015.

[16] S. Li, H. Lim, V. W. Lee, J. H. Ahn, A. Kalia, M. Kaminsky,
D. G. Andersen, O. Seongil, S. Lee, and P. Dubey. Architect-
ing to achieve a billion requests per second throughput on a
single key-value store server platform. In Proceedings of the
Annual International Symposium on Computer Architecture,
pages 476–488. ACM, 2015.

[17] X. Li, D. G. Andersen, M. Kaminsky, and M. J. Freedman. Al-
gorithmic improvements for fast concurrent cuckoo hashing.
In Proceedings of the European Conference on Computer Sys-
tems (EuroSys), pages 27:1–27:14. ACM, 2014.

[18] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky. MICA: A
holistic approach to fast in-memory key-value storage. In Pro-
ceedings of the USENIX Conference on Networked Systems
Design and Implementation (NSDI), pages 429–444, 2014.

[19] J. Liu, W. Jiang, P. Wyckoff, D. K. Panda, D. Ashton,
D. Buntinas, W. Gropp, and B. Toonen. Design and imple-
mentation of MPICH2 over InfiniBand with RDMA support.
In Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS), pages 16–27. IEEE, 2004.

[20] Mellanox. http://www.mellanox.com/.
[21] Memcached. http://memcached.org/.
[22] Z. Metreveli, N. Zeldovich, and M. F. Kaashoek. Cphash:

A cache-partitioned hash table. In ACM SIGPLAN Notices,
volume 47, pages 319–320. ACM, 2012.

[23] C. Mitchell, Y. Geng, and J. Li. Using one-sided RDMA reads
to build a fast, CPU-efficient key-value store. In Proceedings
of the USENIX Annual Technical Conference (ATC), pages
103–114, 2013.

[24] C. Mitchell, K. Montgomery, L. Nelson, S. Sen, and J. Li. Bal-
ancing CPU and network in the cell distributed B-Tree store.
In Proceedings of the USENIX Annual Technical Conference
(ATC), pages 451–464, 2016.

[25] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li. Extracting more
concurrency from distributed transactions. In Proceedings of

the USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 479–494, 2014.

[26] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee,
H. C. Li, R. McElroy, M. Paleczny, D. Peek, P. Saab, et al.
Scaling Memcache at Facebook. In Proceedings of the
USENIX Conference on Networked Systems Design and Im-
plementation (NSDI), pages 385–398, 2013.

[27] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and
M. Rosenblum. Fast crash recovery in RAMCloud. In Pro-
ceedings of the ACM Symposium on Operating Systems Prin-
ciples (SOSP), pages 29–41. ACM, 2011.

[28] M. Poke and T. Hoefler. DARE: High-performance state
machine replication on RDMA networks. In Proceedings of
the International Symposium on High-Performance Parallel
and Distributed Computing (HPDC), pages 107–118, 2015.

[29] P. Stuedi, A. Trivedi, and B. Metzler. Wimpy nodes with
10GbE: Leveraging one-sided operations in soft-RDMA to
boost Memcached. In Proceedings of the USENIX Annual
Technical Conference (ATC), pages 347–353, 2012.

[30] Y. Wang, X. Meng, L. Zhang, and J. Tan. C-Hint: An effective
and reliable cache management for RDMA-accelerated key-
value stores. In Proceedings of the ACM Symposium on Cloud
Computing (SoCC), pages 1–13. ACM, 2014.

[31] M. Wasi-ur Rahman, X. Lu, N. S. Islam, R. Rajachandrasekar,
and D. K. Panda. High-performance design of YARN MapRe-
duce on modern HPC clusters with Lustre and RDMA. In
Proceedings of the International Parallel and Distributed Pro-
cessing Symposium (IPDPS), pages 291–300. IEEE, 2015.

[32] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast in-
memory transaction processing using RDMA and HTM. In
Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), pages 87–104. ACM, 2015.

[33] J. Wu, P. Wyckoff, and D. Panda. PVFS over InfiniBand: De-
sign and performance evaluation. In Proceedings of the In-
ternational Conference on Parallel Processing (ICPP), pages
125–132. IEEE, 2003.

[34] M. Wu, F. Yang, J. Xue, W. Xiao, Y. Miao, L. Wei, H. Lin,
Y. Dai, and L. Zhou. GraM: Scaling graph computation to
the trillions. In Proceedings of the ACM Symposium on Cloud
Computing (SoCC), pages 408–421. ACM, 2015.

[35] X. Wu, Y. Xu, Z. Shao, and S. Jiang. LSM-trie: An LSM-
tree-based ultra-large key-value store for small data items.
In Proceedings of the USENIX Annual Technical Conference
(ATC), pages 71–82, 2015.

