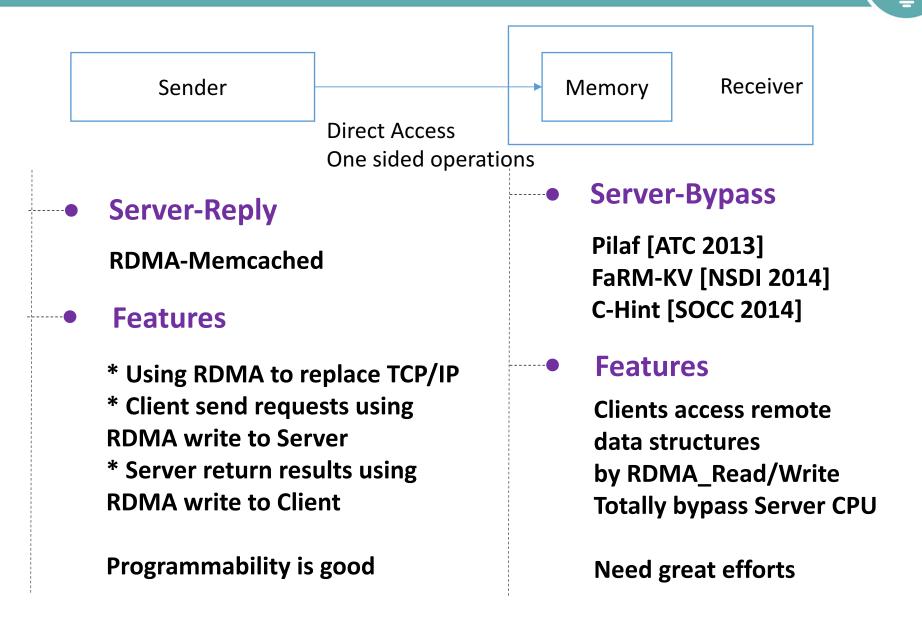


RFP: When RPC is Faster than Server-Bypass with RDMA

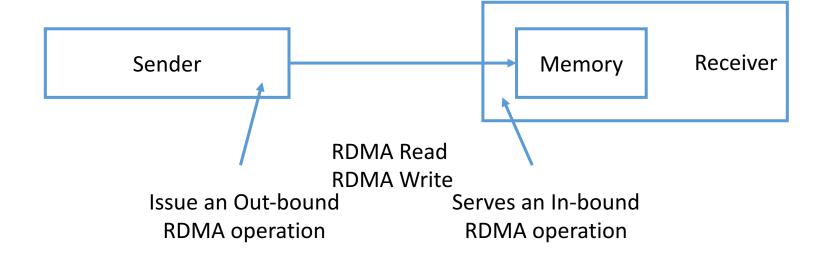
Maomeng Su¹, Mingxing Zhang¹, <u>Kang Chen</u>¹, Zhenyu Guo², Yongwei Wu¹

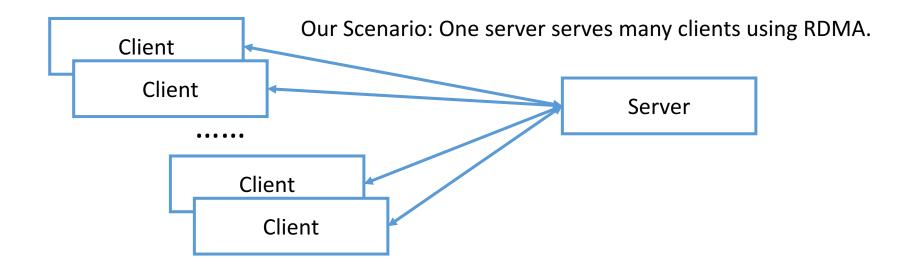
Microsoft Research 微软亚洲研究院

¹Tsinghua University ²Microsoft Research

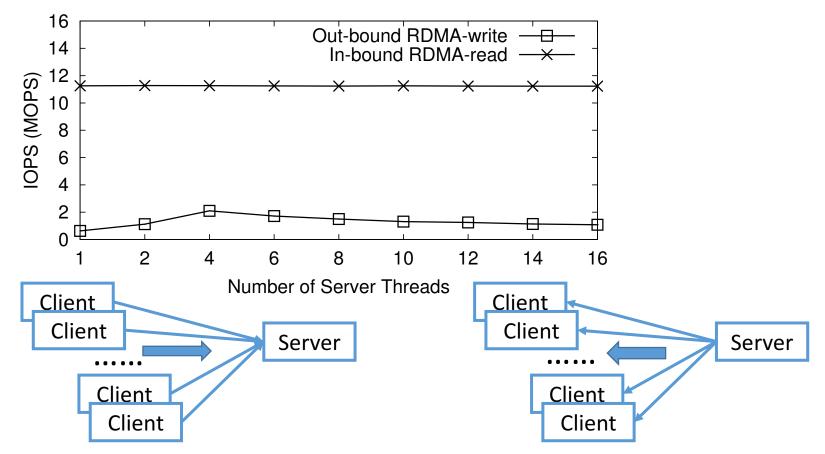

RDMA in modern data centers

RDMA is a **novel** networking technology that offers **low-latency**, high-bandwidth, and server-bypassing features InfiniBand is one of the most popular hardware devices that supports RDMA




Low-latency: 1-3µs High-bandwidth: Up to 100Gb/s Server-bypassing: Server CPU and OS aware nothing about data transfer even the data is already in the server's memory.

RDMA-based related work



In-bound RDMA, Out-bound RDMA

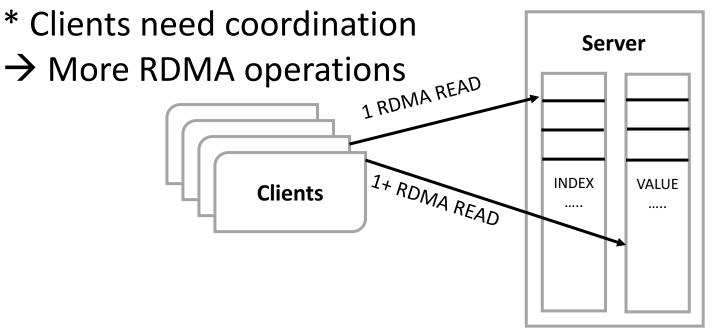
The peak IOPS of in-bound (11.26MOPS) is about 5x higher than that of out-bound (2.11MOPS)

In-bound Testing: RDMA Read

Out-bound Testing: RDMA Write

ideo

In-bound vs. Out-bound Asymmetry


* Overhead: Issuing RDMA > Serving RDMA

→ Performance of In-bound RDMA is better than Out-bound RDMA

Limitation of server-reply mode

The Cost of CPU Bypass

* Server knows nothing and does nothing

E.g., Pilaf uses 3.2 RDMA for 95% GET for readintensive workloads Worse for write-intensive workloads

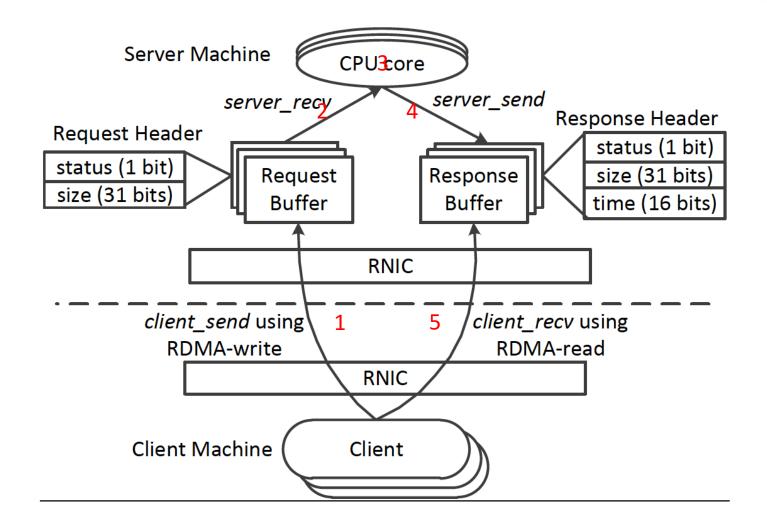
Bypass Access Amplification

- No CPU processing on server
- Clients need coordination
- \rightarrow Lead to more RDMA operation rounds
- \rightarrow Two roundtrips are not enough

Limitation of server-bypass mode

```
int GET(int server id, void *key, int key size,
void *data buf) {
  while(true){
    md=probe_metadata(server_id);
      while(true){
        data=get_data(s_id, md,data_buf);
        if checksum of data buf is ok:
          break:
        get key size' and value size;
        if equal(key, key size, data buf, key size')
          break;
  return value size;
        Special detection
        Special data structures
```

```
int GET(int server_id, void *key, int key_size,
void *value_buf) {
    r_buf=prepare_request(key, key_size,
GET_MODE);
    client_send(s_id, r_buf, sizeof(r_buf));
    size=client_recv(s_id, value_buf);
    return size;
}
```


Familiar with server-reply mode.

Design Choices for RPC system

(idea,	
¥	

Ра	radigm		Progra	mmability	Performance Limitation
Se	rver-Reply		Good		Limited by out-bound performance
S		Need great effort, Special data structures		Limited by number of retries	
	RPC Phases	Request	t Send	Request Process	Result Return
	Server-reply	In-boun	d RDMA	Server involved	Out-bound RDMA
	Server-bypass	In-bound RDMA		Server bypassed	In-bound RDMA
	RFP	In-boun	d RDMA	Server involved	In-bound RDMA
	Meaningless	In-bound RDMA		Server bypassed	Out-bound RDMA

RFP(Remote Fetching Paradigm) Overview

idea

* Always use in-bound operations * Use server CPU to support RPC
* No client coordination * programmability is good

When clients should fetch the results from server?

idea

What size for clients to fetch the results?

Continuously issuing RDMA_READ? * Waste CPU cycles of clients

* Waste In-bound RDMA resources of server

RFP uses hybrid mechanism with a threshold R

- * Continuously fetch R times
- * Switch to server-reply mode afterwards

R is application and system specific

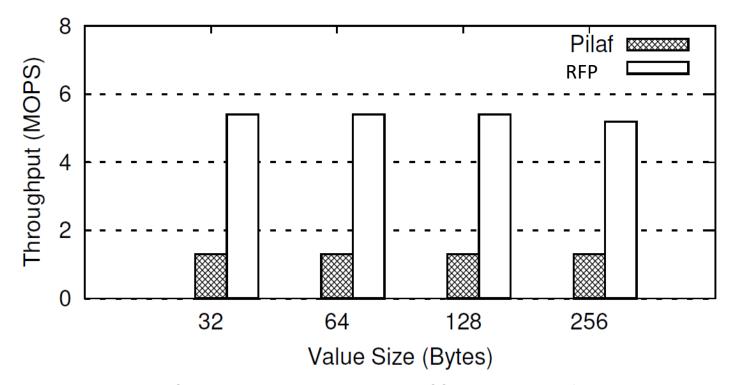
F: the size for fetching results
Too large?
* Waste of network resources.
Too small?
* Need two fetches, first fetch contains the size.

RFP tries to avoid 2 fetches as much as possible.

* Application and system specific.

✓ How much does RFP outperform server-reply and server-bypass? ✓ How does RFP perform under different workloads and datasets? ✓ How to choose R and F?

Evaluation

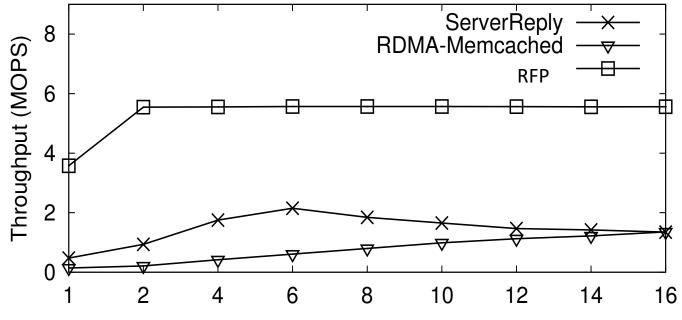

≻ Setup

- A cluster of eight machines
- Dual eight-core CPUs (2.0 GHz), 96 GB RAM, Mellanox ConnectX-3 NIC (40 Gbps)
- Ubuntu 14.04
- Mellanox InfiniScale-IV switch

Datasets and Workloads

- Key-Value store
- Datasets: Uniform vs. Skew (Zipf distribution with parameter .99), generated by YCSB. 128 million keys (key size 8-byte).
- Workloads: Different GET percentiles (95%, 50%, 5%)

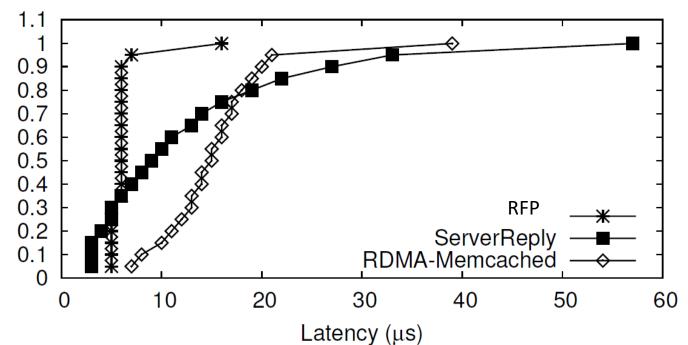
Compare with Server-Bypass



Datasets: Uniform datasets, different value sizes. Workloads: 50% GET Throughput: *RFP* = 4x *Pilaf*'s. Latency: RFP: 2 roundtrips, Pilaf: 3.2 roundtrips Cannot support RPC

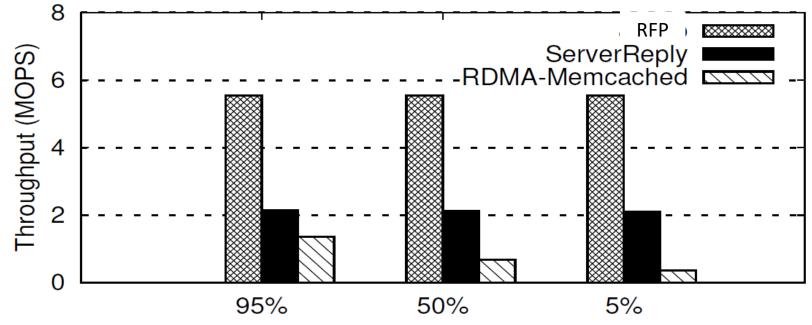
Using server CPU can support RPC

Use Two systems for comparison: ServerReply: A simple implementation of keyvalue store (separate data structure) RDMA-Memcached: Using RDMA to replace the communication (shared data structure)


Number of Server Threads

Datasets: Uniform dataset, same value size (32B) **Workloads:** 50% GET

Throughput: RFP = 2.6 x ServerReply

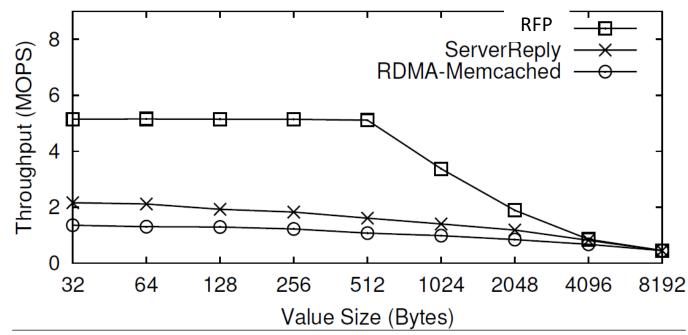

= 4.1 x RDMA-Memcached

Latency on uniform dataset with same value size

Datasets: Uniform dataset, same value size (32B) Workloads: 50% GET Latency: RFP, 5.78 us ServerReply: 12.06us, RDMA-memcached: 14.76us

Throughput on uniform dataset with different workloads

GET Percentage

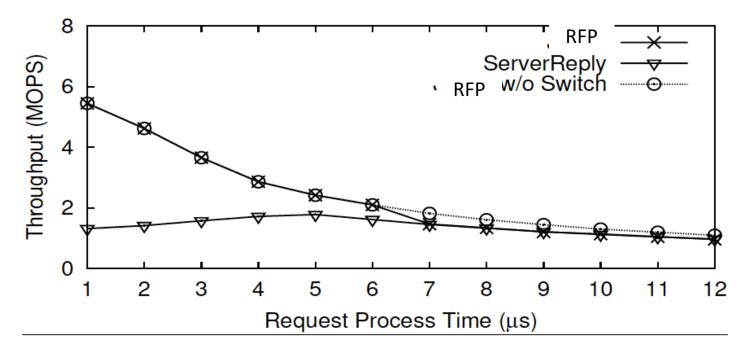

Datasets: Uniform data sets, same value size (32B)

Different Workloads

Throughput: RFP 5.5 MOPS for all workloads

Shared data structure in RDMA-Memcached

Throughput on uniform dataset with different data sizes



Datasets: Uniform datasets, different data sizes **Workload:** 95% Get

Throughput: RFP = 2.6~3.8 x (ServerReply or RDMA-Memcached) (value size 32B ~ 2048B)

Different processing time

For getting the value of R

Dataset: Uniform Dataset with value size 32B **Workloads**: 95% GET

R=5 : Increasing the process time, system should switch to server-reply

(dea

Different Fetching Size

For getting the value of F

Dataset: Uniform Dataset with different value sizes **Workloads**: 95% GET

256, 512, 640 are all OK for support different applications

Limitations

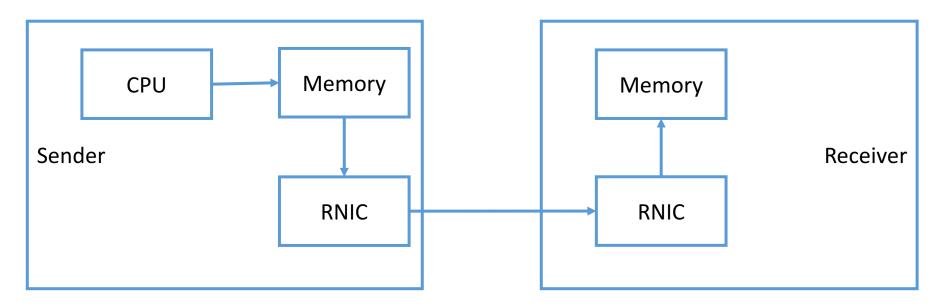
Synchronized Communication

- Extremely low latency requirement
- Batching?
- Small Size Data Communication
 - Data center applications
- Asymmetry System Configuration
 - > MPI or MapReduce?
 - Preferred by key-value stores or databases.

Conclusion

• Based on two observations:

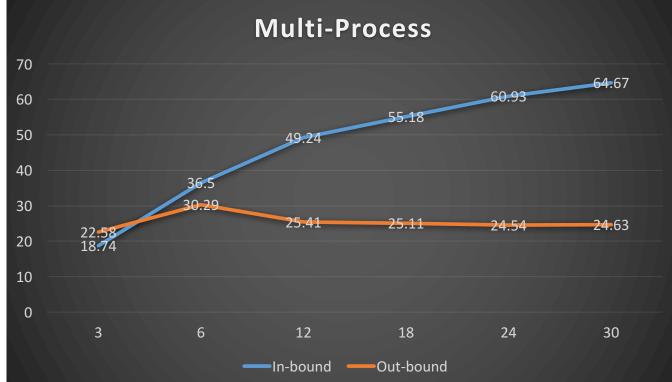
➢ Performance asymmetry of In-bound and


Out-bound operations

- Access Amplification in server bypass
- New paradigm RFP: support RPC, with high performance using server in-bound RDMA operations. The evaluation results shows the benefits.

(dea

Q: What on earth makes the asymmetry, hardware? software? A: Please look at the asymmetry data path. Out-bound RDMA is issued by Sender's CPU. No receiver CPU is used. This is asymmetry. Higher performance InfiniBand devices with lower performance CPU will make more asymmetry.

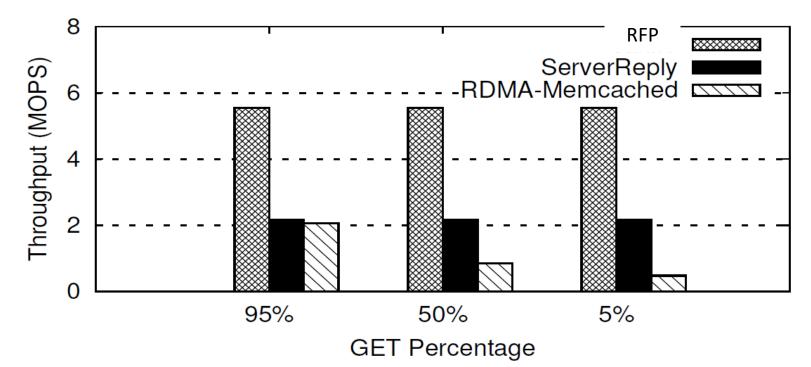

In-bound RDMA

Final Remark 2: Multi-processes

Usually one RDMA context will be use for each process. The context might be a performance limitation.

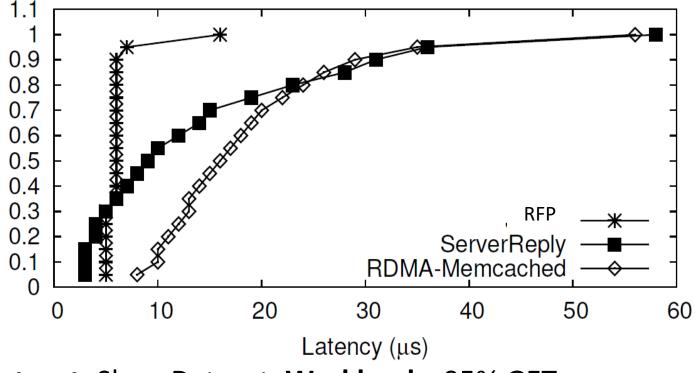
Multiple processes can use more contexts, thus improve the

performance



idec

4 machines (1 server with 3 clients). (Intel E5-2407 2.4Ghz x 4, ConnectX-4 x 1) per machine


Thank You!! Q&A

Throughput on skew dataset with different workloads

Dataset: Skew Dataset Workloads: different workloads Throughput: RFP 5.5 still MOPS (not influenced)

Latency on skew dataset

Dataset: Skew Dataset, Workloads: 95% GET

> *RFP* performs **best** in average latency

ServerReply is still limited by the RNIC's **out-bound** RDMA-write

> RDMA-Memcached is bounded by the CPU at the server side

The number of retries in RFP under different workloads

	Uniform		Skewed	
	95% GET	5% GET	95% GET	5% GET
Percentage of N > 1	0.105%	0.13%	0.09%	0.09%
The largest N	6	5	9	4

This kind of occasional case(*the number of retries can be as large as 9*) **never** repeatedly appears, so there will not be an unnecessary switch between *RFP* and *server-reply*

Related Work

Different Queue Pair Types

Reliable Connection(RC)
 All the server-bypass solutions
 include RFP (The only queue type
 that supports both one-sided
 RDMA_READ and RDMA_Write)

 Unreliable Connection(UC, UD) HERD, Fasst(achieve higher performance)

Techniques such as Doorbell batching can be used for UD-based solution to gain lower latency and higher throughout.

Different Paradigms

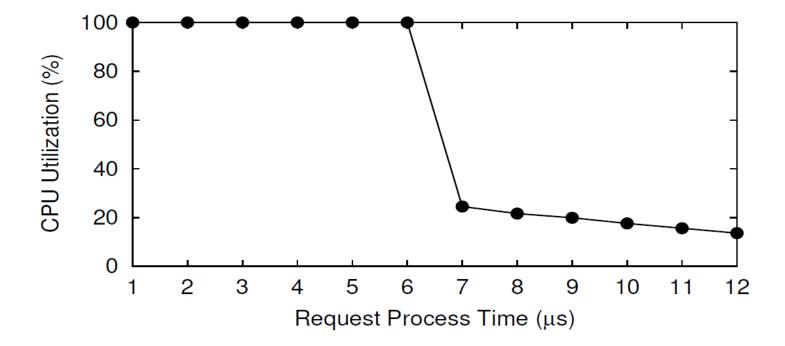
• Server-reply Hbase with RDMA, RDMAmemcached and DARE

Server-bypass DrTM, C-Hint and FaRM

 A combination of server-reply and server-bypass
 Pilaf and *Cell*

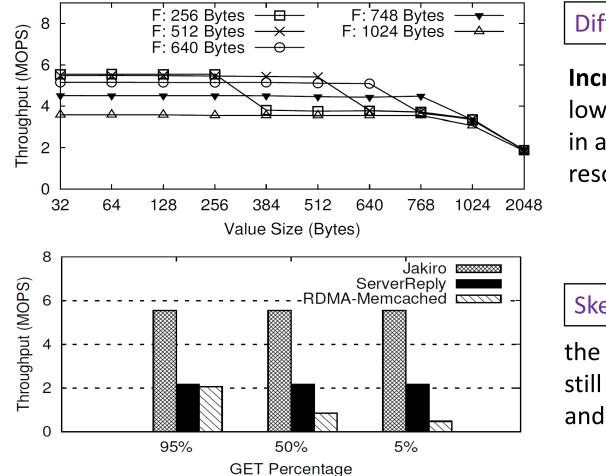
Pilaf, C-Hint, and FaRM, all of them using server-reply to serve PUT requests cause these systems suffering from the limited performance of server's out-bound RDMA.


Backup1 RFP(Remote Fetching Paradigm) Overview


Basic APIs in RFP

	Request Send
client send(server id, local buf, size)	Client sends message (kept in local buf) to server's memory through RDMA-write
client recv(server id, local buf)	Client remotely fetches message from server's memory into local buf through RDMA-read
server send(client id, local buf, size)	Server puts message for client into local buf
server recv(client id, local buf)	Server receives message from local buf
malloc buf(size)	Allocate local buffers that are registered in the RNIC for message transferring through RDMA
free buf(local buf)	Free local buf that is allocated with malloc buf

Performance of RFP



The server thread number is 6 and the value size is 32 bytes. The workload is *uniform* and *read-intensive*(95% GET)

RFP automatically switches to the server-reply mode for reducing clients' CPU utilization when the request process time becomes longer

Different Fetching Size

Increasing the fetching just lowers the performance of *RFP* in average due to network resource wasting

Skewed Workload

the peak throughput of *RFP* is still **5.5** MOPS under 5%, 50%, and 95% GET percentages.

$$T = \sum_{i=1}^{M} T_i, \text{ where } T_i = \begin{cases} I_{R,F} & F \ge S_i \\ I_{R,F}/2 & F < S_i \end{cases}$$

- $T = \operatorname*{argmax}_{R,F} f(R,F,P,S)$
- **T** System Throughput
- **R** the retrying number of RDMA Read from clients before it switches to server-reply mode;
- **F** the fetching size used by the clients to read remote results from server;
- **P** the process time for requests on server;
- **S** the RPC call result sizes.
 - ✓ P and S related to applications only.
 - ✓ R and F are related to both applications and the *RDMA* hardware.

