
RFP:	When	RPC	is	Faster	than	
Server-Bypass	with	RDMA

Maomeng Su1,	Mingxing Zhang1,	Kang	Chen1,
Zhenyu Guo2,	Yongwei Wu1

1Tsinghua	University
2Microsoft	Research



RDMA	in	modern	data	centers

RDMA	is	a	novel	networking technology	that	offers	
low-latency,	high-bandwidth,	and	server-bypassing features

Low-latency:	1-3μs
High-bandwidth:	Up	to	100Gb/s	
Server-bypassing:	Server	CPU	and	OS	aware	nothing	about	data	
transfer	even	the	data	is	already	in	the	server’s	memory.

InfiniBand is	one	of	the	most	popular	hardware	devices	that	supports	RDMA



RDMA-based	related	work

Pilaf	[ATC	2013]
FaRM-KV	[NSDI	2014]
C-Hint	[SOCC	2014]

Server-Bypass

Features
Clients	access	remote	
data	structures	
by	RDMA_Read/Write
Totally	bypass	Server	CPU

Need	great	efforts

RDMA-Memcached

Server-Reply

Features

*	Using	RDMA	to	replace	TCP/IP
*	Client	send	requests	using	
RDMA	write	to	Server
*	Server	return	results	using	
RDMA	write	to	Client

Programmability	is	good

Sender ReceiverMemory

Direct Access
One	sided	operations



In-bound	RDMA,	Out-bound	RDMA

Sender ReceiverMemory

RDMA Read
RDMAWrite

Issue	an	Out-bound
RDMA	operation

Serves	an	In-bound
RDMA	operation	

Server

Client

Client

Client

Client

……

Our Scenario: One server serves many	clients	using	RDMA.



In-bound	vs.	Out-bound	Asymmetry

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 6 8 10 12 14 16

IO
P

S
 (

M
O

P
S

)

Number of Server Threads

Out-bound RDMA-write
In-bound RDMA-read

The	peak	IOPS	of	in-bound	(11.26MOPS)	is	about	5x
higher	than	that	of	out-bound	(2.11MOPS)

Server

Client
Client

Client
Client

…… Server

Client
Client

Client
Client

……

In-bound	Testing:	RDMA	Read Out-bound	Testing:	RDMA	Write



Observation1

In-bound	vs.	Out-bound	Asymmetry

*	Overhead:	Issuing	RDMA		>	Serving	RDMA

à Performance	of	In-bound	RDMA	is	better	
than	Out-bound	RDMA

Limitation	of	server-reply	mode



Bypass	Access	Amplification

The	Cost	of	CPU	Bypass
*	Server	knows	nothing	and	does	nothing
*	Clients	need	coordination
àMore	RDMA	operations

E.g.,	Pilaf	uses	3.2	RDMA	for	95%	GET	for	read-
intensive	workloads
Worse	for	write-intensive	workloads

Clients INDEX
…..

VALUE
…..

Server



Observation	2

Bypass	Access	Amplification
• No	CPU	processing	on	server
• Clients	need	coordination
• à Lead	to	more	RDMA	operation	rounds
• à Two	roundtrips	are	not	enough

Limitation	of	server-bypass	mode



What	about	programmability?

int GET(int server_id,	void *key,	int key_size,	
void *data_buf)	{	
while(true){	
md=probe_metadata(server_id);
while(true){	
data=get_data(s_id,	md,data_buf);
if checksum	of	data_buf is	ok:	
break;	

}	
get	key_size’	and	value_size;	
if equal(key,	key_size,	data_buf,	key_size’)	
break;	

}	
return value_size;	

}	

int GET(int server_id,	void *key,	int key_size,	
void *value_buf)	{	
r_buf=prepare_request(key,	key_size,	

GET_MODE);
client_send(s_id,	r_buf,	sizeof(r_buf));
size=client_recv(s_id,	value_buf);	
return size;	

}	

Familiar	with	server-reply	mode.

Special	detection
Special	data	structures



Design	Choices	for	RPC	system

RPC	Phases Request	Send Request Process Result Return

Server-reply In-bound	RDMA Server	involved Out-bound	RDMA

Server-bypass In-bound	RDMA Server	bypassed In-bound	RDMA

RFP In-bound	RDMA Server	involved In-bound	RDMA

Meaningless In-bound	RDMA Server	bypassed Out-bound	RDMA

Paradigm Programmability Performance	
Limitation

Server-Reply Good Limited by	out-bound	
performance

Server-Bypass Need great	effort,
Special data	
structures

Limited by	number	of	
retries



RFP(Remote	Fetching	Paradigm)	Overview

*	Always	use	in-bound	operations	*	Use	server	CPU	to	support	RPC
*	No	client	coordination	*	programmability	is	good

1

2

3

4

5



RFP(Remote	Fetching	Paradigm)	Challenges

üWhen clients	should	fetch	the	results	
from	server?	

üWhat size	for	clients	to	fetch	the	
results?



When	Clients	Fetch	the	Results	in	RFP

Continuously	issuing	RDMA_READ?
*	Waste	CPU	cycles	of	clients
*	Waste	In-bound	RDMA	resources	of	server

RFP	uses	hybrid	mechanism	with	a	threshold	R
*	Continuously	fetch	R	times
*	Switch	to	server-reply	mode	afterwards

R	is	application	and	system	specific



What	size	client	should	fetch?

F:	the	size	for	fetching	results
Too	large?
*	Waste	of	network	resources.
Too	small?
*	Need	two	fetches,	first	fetch	contains	the	
size.

RFP	tries	to	avoid	2	fetches	as	much	as	
possible.
*	Application	and	system	specific.



Evaluation

üHow	much	does	RFP	outperform	
server-reply and	server-bypass?

üHow	does	RFP	perform	under	
different	workloads	and	datasets?

üHow	to	choose	R and	F?



Evaluation

Ø Setup
Ø A	cluster	of	eight	machines
Ø Dual	eight-core	CPUs	(2.0	GHz),	96	GB	RAM,	Mellanox

ConnectX-3	NIC	(40	Gbps)
Ø Ubuntu	14.04
Ø Mellanox InfiniScale-IV	switch

Ø Datasets	and	Workloads
Ø Key-Value	store
Ø Datasets:	Uniform	vs.	Skew	(Zipf distribition with	

parameter	.99),	generated	by	YCSB.	128	million	keys	(key	
size	8-byte).

Ø Workloads:	Different	GET	percentiles	(95%,	50%,	5%)



Compare	with	Server-Bypass

Datasets:	Uniform	datasets,	different	value	sizes.
Workloads:	50%	GET
Throughput:	RFP =	4x Pilaf’s.
Latency:	RFP:	2	roundtrips,	Pilaf:	3.2	roundtrips
Cannot	support	RPC

RFP



Compare	with	Server-Reply

Use	Two	systems	for	comparison:
ServerReply:	A	simple	implementation	of	key-
value	store	(separate	data	structure)
RDMA-Memcached:	Using	RDMA	to	replace	
the	communication	(shared	data	structure)

Using	server	CPU	can	support	RPC



Compare	with	Server-Reply
Throughput on uniform dataset with same value size

Datasets:	Uniform	dataset,	same	value	size	(32B)
Workloads:	50%	GET
Throughput:	RFP	=	2.6	x	ServerReply

=	4.1	x	RDMA-Memcached

 0

 2

 4

 6

 8

1 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t 
(M

O
P

S
)

Number of Server Threads

ServerReply
RDMA-Memcached

JakiroRFP



Compare	with	Server-Reply

Datasets:	Uniform	dataset,	same	value	size	(32B)
Workloads:	50%	GET
Latency: RFP,	5.78	us

ServerReply:	12.06us,	
RDMA-memcached:	14.76us

RFP

Latency on uniform dataset with same value size



Compare	with	Server-Reply

Different Workloads
Throughput:	RFP	5.5	MOPS	for	all	workloads

Shared	data	structure	in	RDMA-Memcached

Datasets:	Uniform	data	sets,	same	value	size	(32B)

RFP

Throughput on uniform dataset with different workloads



Compare	with	Server-Reply

Datasets:	Uniform	datasets,	different	data	sizes
Workload:	95%	Get
Throughput:	RFP	=	2.6~3.8	x		(ServerReply or	RDMA-Memcached)

(value	size	32B	~	2048B)

RFP

Throughput on uniform dataset with different data sizes



Compare	with	Server-Reply

R=5 :	Increasing	the	process	time,	system	
should	switch	to	server-reply

Different	processing	time

Dataset:	Uniform	Dataset	with	value	size	32B
Workloads:	95%	GET

For	getting	the	value	of	R

RFP

RFP



Compare	with	Server-Reply

256,	512,	640	are	all	OK	for	support	different	applications

Different	Fetching	Size

Dataset:	Uniform	Dataset	with	different	value	sizes
Workloads:	95%	GET

For	getting	the	value	of	F



Limitations

Ø Synchronized	Communication
Ø Extremely	low	latency	requirement
Ø Batching?

Ø Small	Size	Data	Communication
Ø Data	center	applications

Ø Asymmetry	System	Configuration
Ø MPI	or	MapReduce?
Ø Preferred	by	key-value	stores	or	databases.



Conclusion
• Based	on	two	observations:

ØPerformance	asymmetry	of	In-bound	and	

Out-bound	operations

ØAccess	Amplification	in	server	bypass	

• New	paradigm	RFP:	support	RPC,	with	high	
performance	using	server	in-bound	RDMA	
operations.	The	evaluation	results	shows	the	
benefits.	



Final	Remark	1: behind asymmetry.

Q:	What	on	earth	makes	the	asymmetry,	hardware?	software?
A:	Please look at the	asymmetry data path. Out-bound RDMA is
issued by Sender’s CPU. No receiver CPU is used. This	is	
asymmetry.	Higher performance InfiniBand devices	with lower
performance CPU will make more asymmetry.

Sender Receiver

Memory

Out-bound RDMA In-bound RDMA

RNIC

Memory

RNIC

CPU



Final Remark 2: Multi-processes

4	machines	(1 server with	3	clients).		(Intel	E5-2407	
2.4Ghz	x	4,	ConnectX-4	x	1)	per	machine

Usually	one	RDMA	context	will	be	use	for	each	process.	The	
context	might	be	a	performance	limitation.
Multiple	processes	can	use	more	contexts,	thus	improve	the	
performance

18.74

36.5

49.24
55.18

60.93
64.67

22.58

30.29
25.41 25.11 24.54 24.63

0

10

20

30

40

50

60

70

3 6 12 18 24 30

Multi-Process

In-bound Out-bound



Thank	You!!
Q&A



Compare	with	Server-Reply

Dataset:	Skew	Dataset
Workloads:	different	workloads
Throughput:	RFP	5.5	still	MOPS	(not	influenced)

RFP

Throughput on skew dataset with different workloads



Compare	with	Server-Reply

ØRFP performs	best in	average	latency
Ø ServerReply is	still	limited	by	the	RNIC’s	out-bound RDMA-write
ØRDMA-Memcached is	bounded	by	the	CPU at	the	server	side

Dataset:	Skew	Dataset,Workloads:	95%	GET

RFP

Latency on skew dataset



Compare	with	Server-Reply

Uniform Skewed
95%	GET 5% GET 95% GET 5%	GET

Percentage	of	N	>	1 0.105% 0.13% 0.09% 0.09%

The largest	N 6 5 9 4

The	number	of	retries	in	RFP	under	different	workloads

This	kind	of	occasional	case(the	number	of	retries	can	be	
as	large	as	9)	never repeatedly	appears,	so	there	will	not	
be	an	unnecessary	switch	between	RFP and	server-reply



Related	Work

Different	Queue	Pair	Types Different	Paradigms

Reliable	Connection(RC)
All	the	server-bypass solutions	
include	RFP (The	only	queue	type	
that	supports	both	one-sided	
RDMA_READ and	RDMA_Write)

Unreliable	Connection(UC,	UD)
HERD,	Fasst(achieve	higher	
performance)

Server-reply
Hbase with	RDMA,	RDMA-
memcached and	DARE

Server-bypass
DrTM,	C-Hint and	FaRM

A	combination	of	server-reply	and	
server-bypass
Pilaf and	Cell

Pilaf,	C-Hint,	and	FaRM,	all	of	them	using	
server-reply	to	serve	PUT	requests	cause	
these	systems	suffering	from	the	limited	
performance	of	server’s	out-bound	RDMA.

Techniques	such	as	Doorbell	batching	can	
be	used	for	UD-based	solution	to	gain	
lower	latency	and	higher	throughout.



Backup1	RFP(Remote	Fetching	Paradigm)	
Overview

Request	Send

client	send(server	id,	local	buf,	size) Client	sends	message	(kept	in	local	buf )	to	
server’s	memory	through	RDMA-write

client	recv(server	id,	local	buf) Client	remotely	fetches	message	from	
server’s	memory	into	local	buf through	
RDMA-read

server	send(client	id,	local	buf,	size) Server	puts	message	for	client	into	local	buf

server	recv(client	id,	local	buf) Server	receives	message	from	local	buf

malloc buf(size) Allocate	local	buffers	that	are	registered	in	
the	RNIC	for	message	transferring	through	
RDMA

free	buf(local	buf) Free	local	buf that	is	allocated	with	malloc
buf

Basic	APIs	in	RFP



Performance of	RFP

 0

 2

 4

 6

 8

7 14 21 28 35 42 49 56 63 70

T
h

ro
u

g
h

p
u

t 
(M

O
P

S
)

Number of Client Threads

The	server	thread	number	is	6	and	the	
value	size	is	32	bytes.	The	workload	is	
uniform and	read-intensive(95%	GET)



Compare	with	Server-Reply

RFP automatically switches to the server-reply mode for 
reducing clients’ CPU utilization when the request process time 
becomes longer



Compare	with	Server-Reply

Increasing the	fetching	just	
lowers	the	performance	of	RFP
in	average	due	to	network	
resource	wasting

the	peak	throughput	of	RFP	is	
still	5.5MOPS	under	5%,	50%,	
and	95%	GET	percentages.

Skewed	Workload

Different	Fetching	Size



Overall	Performance	Metrics

• T – System Throughput
• R – the	retrying	number	of	RDMA	Read	from	clients

before	it	switches	to	server-reply	mode;
• F – the	fetching	size	used	by	the	clients	to	read	remote

results	from	server;
• P – the	process	time	for	requests	on	server;
• S – the	RPC	call	result	sizes.

ü P	and	S	related	to	applications	only.
ü R	and	F	are	related	to	both	applications	and	the

RDMA hardware.




