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Abstract
With the availability of commercial NVM devices such as

Intel Optane DC PMM, it is time to start thinking about ap-
plying the existing persistent data structures in practice. This
paper considers three practical aspects, which have signifi-
cant influences on the design of persistent indexes, including
functionality, performance and correctness.

We design a new persistent index, ROART, based on adap-
tive radix tree (ART), taking all these practical aspects into
account. ROART (i) proposes a leaf compaction method
to reduce pointer chasing for range queries, (ii) minimizes
persistence overhead with three optimizations, i.e., entry com-
pression, selective metadata persistence and minimally or-
dered split, and (iii) designs a fast memory management to
prevent memory leaks, and eliminates the long recovery time
by proposing an instant restart strategy. Evaluations show
that ROART outperforms the state-of-the-art radix tree by up
to 1.65× and B+-Trees by 1.17∼8.27× respectively.

1 Introduction

Emerging Non-Volatile Memory (NVM) is attractive because
of its byte-addressability, low latency and durability. Many
researchers have focused on how to design fast persistent
data structures [1–30]. With the announcement of the first
generation products (Intel Optane DC PMM [31]), it is time
to investigate how to apply the achieved results in practice.

We point out that there are three significant aspects af-
fecting the design of persistent indexes, i.e., functionality,
performance, and correctness. Any persistent index designed
for practical uses needs to consider these aspects carefully.

1. Functionality: Variable-sized Keys and Range Queries.
Variable-sized keys are important in real world systems,
such as RDBMS [32–41] and Key-Value Stores [25, 42–47].
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Whether an index supports variable-sized keys will have a
great impact on the direction of its optimization. Moreover,
range queries are used to support inequality comparisons in
many real-world applications [32–41]. Therefore, it is desir-
able that the index structure supports range queries efficiently
in addition to point read and write operations. In this paper,
we focus on index structures that support both variable-sized
keys and range queries.

2. Performance: Persistence Overhead. Persistence over-
head plays an essential role in the performance of indexes
targeting NVM. To guarantee crash consistency of indexes,
once an operation is completed, the modification must be
persisted to NVM by cache line flush and memory fence in-
structions. Due to the design of hardware, NVM writes have
lower throughput than reads and poor scalability of band-
width (because the writes issued by more threads exceed the
capability of underlying buffers [48]). Moreover, persistence
operations incur much larger (e.g., at least by 2.4×) overhead
than normal writes.

3. Correctness: Anomaly Resolution and Memory Safety.
First, persistent indexes may suffer from anomalies [26], such
as lost update and dirty read, if they provide no protection to
concurrent operations. These anomalies will cause the effect
of successful operations to disappear after system crash and
restart. Second, memory allocations in NVM need to deal with
crash consistency, which is not a problem in DRAM. Memory
leaks may happen after a crash due to (i) inconsistent memory
allocation metadata, and/or (ii) lazy GC (garbage collection)
used in the design of non-blocking data structures.

In order to support range queries, our work mainly focuses
on tree-based indexes rather than hash tables. According to
our experiments (§2.1), B+-Trees may not be the best per-
forming index for variable-sized keys. Therefore, we choose
the radix tree as our basis, which naturally supports variable-
sized keys. To the best of our knowledge, no recent persis-
tent radix tree has fully taken the above aspects into account.
WORT [19] is write-optimized but only runs in a single thread.
P-ART [24] is a concurrent persistent radix tree converted
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from the volatile ART [49, 50] index based on the principles
of RECIPE. There is little optimization on range queries and
persistence overhead. Moreover, neither of the two radix trees
considers memory safety, which may lead to memory leaks.

We propose a new index structure called ROART (Range-
query Optimized Adaptive Radix Tree), considering all the
above factors. To improve range queries, we propose leaf com-
paction (LC) that delays the leaf split and compacts multiple
leaf nodes into a leaf array. The benefits of this technique
are threefold. First, it reduces pointer chasing during range
queries. Second, it can decrease the number of complex split
operations. Finally, it tends to lower the height of the tree,
which is beneficial to all index operations.

To reduce persistence overhead, we propose three optimiza-
tions in ROART: (i) Entry compression (EC) that combines
the key and the child pointer in an 8-byte entry; (ii) Selec-
tive Metadata Persistence (SMP) to reduce the amount of
metadata to persist; and (iii) minimally ordered split (MO)
that relaxes the order of steps in a split operation to reduce
the number of sfence instructions. Previously mentioned LC
also helps here because it delays leaf node split and reduces
its persistence overhead.

For correctness, we protect ROART against anomalies
by using non-temporal store [24, 48] techniques. For
memory safety, there have been several previous proposals.
Logging-based allocators [51–53] suffer from heavy persis-
tence overhead for allocation/deallocation operations. Post-
crash garbage collection techniques [22, 54–56] reduce the
persistence overhead, but introduce long recovery time. We
propose a new technique, called instant restart, with con-
current post-crash garbage collection. While performing the
background GC during recovery, indexes can handle fore-
ground requests concurrently, i.e., restarting services instantly.
We integrate this technique in our new memory allocator,
called DCMM (Delayed Check Memory Management).

In summary, this paper makes the following contributions:
(1) We present an in-depth analysis on the three practi-

cal aspects of persistent indexes to understand the impact of
different design choices (§2).

(2) We propose ROART that addresses the three design
aspects (§3). For functionality, we choose ART as basis to
naturally support variable-sized keys and propose a leaf com-
paction method to optimize range queries. For performance,
we propose three techniques to reduce persistence overhead,
i.e., entry compression, selective metadata persistence and
minimally ordered split. For correctness, we carefully protect
ROART against anomalies, and design DCMM with instant
restart to support memory safety without long recovery time.

(3) We perform extensive experiments to compare
ROART with state-of-the-art tree-based indexes (§4), includ-
ing P-ART [24], PMwCAS-ART (implemented with PMw-
CAS [23]), FAST&FAIR [5], SkipList [22] and BzTree [6].
ROART outperforms the existing solutions by 1.15∼8.27×
under YCSB workloads.
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Figure 1: Performance degradation of storing variable-size
data in FAST&FAIR.

2 Practical Considerations

We discuss the three aspects, i.e. functionality, persistence
overhead, and correctness, in detail in this section.

2.1 Functionality

2.1.1 Variable-sized Keys

Indexes supporting variable-sized keys can be applicable to a
wider range of applications, including database systems [32–
41]. However, such support may come with a price.

A number of persistent B+-Tree indexes maintain fixed-
sized (8-byte key and 8-byte value) entries in the array of
nodes such as NVTree [3], wB+-Tree [2], FPTree [4], RN-
Tree [7] and LB+-Tree [9], and entries are appended to the
arrays. FAST&FAIR [5], which also supports only fixed 8-
byte keys, reduces the number of clwbs if multiple keys and
values are in the same cache line. These B+-Trees have excel-
lent cache locality and high traversal performance based on
optimizing 8-byte keys only.

A straightforward way to adapt the indexes with 8-byte keys
to support variable-sized keys is to allocate extra data areas
and store the addresses of the keys in the indexes. However,
this incurs pointer chasing overhead. We use FAST&FAIR,
a state-of-the-art persistent B+-Tree, as an example to re-
veal the performance degradation using such a method. In
Figure 1, we evaluate the performance of five operations
(lookup/insert/update/remove/scan) with four threads using
modified FAST&FAIR. We use the above method to support
variable-sized keys, and use an appropriate NVM allocator
(with post-crash GC (§2.3.2)) to eliminate the persistence
overhead during allocation, so that we can focus on the per-
formance difference between fixed-sized and variable-sized
keys. We find the degradations of the five operations are about
3.9/1.8/2.79/2.15/1.94× respectively. The main performance
difference comes from pointer chasing and string comparison
during traversal. To persist extra data areas, operations like
insert/update introduce more persistence.

BzTree [6] employs a different approach, slotted pages,
for variable-sized keys. Based on this approach, fixed-sized
metadata grows downward into the node, and variable-sized
keys and values grow upward. Such an approach can reduce
pointer chasing during traversal, but introduce the cost of
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additional metadata [8]. The performance of BzTree is in
Figure 14, its lookups are fast but writes are slow.

Indexes based on radix tree [49] have better performance
(Figure 14) in supporting variable-sized keys than B+-Tree
due to less comparison in traversal. However, they also have
their own shortcomings, such as inefficiency on range queries.

2.1.2 Range Queries

Range query is an important feature in RDBMS [32–41]
and Key-Value Stores [25, 42–47]. This paper focuses on
tree-based indexes which naturally support range queries. B+-
Trees support efficient range queries because multiple keys
are stored in one leaf node, and scan in leaf nodes causes no
pointer chasing. In other tree structures, such as radix trees
and binary search trees, one node can only store one key, and
keys can be stored in leaf nodes but also in non-leaf nodes.
Range queries on these trees have to traverse different levels
of the trees, and chase more pointers. As the performance gap
between sequential read and random read is larger in NVM
than that in DRAM [48], more random accesses deteriorate
the range query performance in NVM.

However, B+-Trees may not be the best choice for indexes
when both variable-sized keys and range queries are required.
In Figure 1, the scan throughput of B+-Trees decreases by
48.5% when variable-sized keys are used. In §3, we optimize
the adaptive radix tree (ART) for range queries.

2.2 Persistence Overhead
Explicit persistence is required to guarantee crash consistency
for indexes in NVM. However, cache line flush and memory
fence are costly compared to other instructions. Due to the
poor scalability of NVM writes [48], reducing the persistence
overhead is crucial for improving performance.

There are several general methods to convert a volatile in-
dex to its non-volatile counterpart in NVM. PMwCAS [23]
records the metadata of each CAS (Compare-and-Swap) into
a descriptor to ensure multiple CASs can execute atomically.
RECIPE [24] adds a persistent instruction (flush and fence)
after each store to ensure persistence. Unfortunately, with-
out any optimization to reduce persistence operations, such
generality comes with high overhead [8].

Other works propose special optimizations to eschew heavy
persistence. wB+-Tree [2], NVTree [3], FPTree [4], and LB+-
Tree [9] abandon the order of keys in leaf nodes to reduce
writes for insertions and deletions. FAST&FAIR [5] and LB+-
Tree [9] reduce persistence operations by making data share
the same cache line as much as possible. RNTree [7] uses
HTM [57] to increase the granularity of atomic writes to re-
duce the number of persistence operations. From the above,
we see that it is important to exploit the properties of tar-
get data structures. In this paper, we optimize persistence in
ROART by exploiting inherent properties of ART (§3).

Table 1: States of three steps in an insert operation.
next pointer Step (i) Step (ii) Step (iii)
volatile state old new new
persistent state old old new

A B

C

A B

C

(a)	Dirty	Read

A B

C

A B

C
(b)	Lost	Update

D

Figure 2: Two anomalies in unmodified lock-free linked list.
The dotted line indicates that it has not been persisted.

2.3 Correctness

2.3.1 Anomaly Resolution

When designing lock-free non-volatile data structures, two
anomalies (Dirty Read and Lost Update), are prone to oc-
cur [26]. The main reason is that threads may access data yet
to be persisted, which are lost after crash and restart.

We use the lock-free linked list [58] as an example to de-
scribe the two anomalies. The insert operation has three steps.
Step (i) creates a new node, sets its next pointer to point to the
successor, and then persists the new node. Step (ii) updates the
next pointer of the predecessor to point to the new node. Step
(iii) persists the next pointer of the predecessor. The states
of the predecessor’s next pointer are shown in Table 1. Note
that there is an inconsistency between volatile and persistent
states in step (ii). Without extra protection mechanisms, two
anomalies can happen, as illustrated in Figure 2.
Dirty Read. In Figure 2(a), an insert operation inserts a new
node C between A and B. Suppose, the operation finishes
step (ii) but has not executed step (iii) yet. At this moment,
a concurrent read operation visits C. If the system crashes at
this point, C is lost after restart and the read operation has
read the uncommitted dirty data.

Lost Update. In Figure 2(b), two insert operations want to
insert two adjacent nodes C and D between A and B. The
successful result should be A→C→ D→ B. Suppose that a
thread completes step (i) and (ii) for inserting C. Then another
thread inserts D between C and B, and completes all three
steps. If the system crashes before the insert of C completes
step (iii), we can only recover A→ B from NVM, but lose the
completed insert operation of D.

These anomalies can be fixed in various ways. For lock-
free designs, link-and-persist [22] and PMwCAS [23] can
be used, e.g., BzTree stays away from anomalies by PMwCAS,
SkipList can ensure correctness by link-and-persist. For
lock-based designs, implementations can replace temporal
store with non-temporal store [24], such as P-ART [24].
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Figure 5: Recovery time of Makalu.

2.3.2 Memory Safety

It is important to guarantee crash consistency for NVM mem-
ory management. Inconsistent metadata for allocation/deallo-
cation operations and/or lazy garbage collection can lead to
memory leaks.

NVM Allocation. Many existing studies employ the sim-
plistic solution that uses volatile allocators, such as malloc,
libvmmalloc [59], for persistent memory. An allocation typi-
cally consists of three steps: (i) allocate a free NVM block, (ii)
modify the allocator’s metadata, and (iii) return the allocated
block to the application. However, these volatile allocators
pay no attention to crash consistency of allocators’ metadata.
Once the system crashes during the allocation process, the
metadata is likely to be inconsistent, making part of the NVM
memory unreachable. Moreover, volatile allocators can result
in inaccurate performance evaluation for applications based
on them [48], because they overlook the expensive persistent
instructions. Therefore, using volatile allocators directly for
NVM is not appropriate.

Correct NVM allocators are divided into two categories,
logging-based allocator [51–53] and post-crash GC [22, 54–
56]. The former uses logging to ensure the atomicity of op-
erations, introducing additional persistence overhead. The
latter reclaims garbage data by scanning all memory space
during recovery. It reduces persistence overhead during allo-

Table 2: Analysis of recent works1.

Name Functionality Correctness

Variable Range Query Anomaly Allocation GC

NVTree l 4 t s t
wB+-Tree l 4 t s t

FPTree l 4 4 s t
FAST&FAIR l 4 4 6 6

RNTree l 4 4 6 6
WORT 4 l t 6 t
BzTree 4 4 4 4 4
P-ART 4 l 4 6 6

LB+-Tree l 4 4 s t

NOTE: s: not open-sourced t: no need l: not optimized
4: support 6: poor support

cation/deallocation operations, but suffers long recovery time
as the amount of data increases.

Allocation Performance. We evaluate five commonly used
(volatile and persistent) NVM allocators as follows:

a1: malloc, the standard volatile allocator for DRAM.
a2: libvmmalloc, volatile allocator based on jemalloc.
a3: PMDK [51], logging-based persistent allocator.
a4: nvm_malloc [52], logging-based persistent allocator.
a5: Makalu [54], persistent allocator with post-crash GC.
Figure 3(a) shows the raw performance of the allocators.

The test continuously allocates 64-byte chunks, then writes
and persists them in a single thread. Makalu is 50% and 28%
slower than malloc and libvmmalloc, respectively. PMDK and
nvm_malloc are 81% and 38% slower than Makalu, respec-
tively. Performance of FAST&FAIR using different allocators
is shown in Figure 3(b). We see that the gaps between differ-
ent cases are narrowed due to the tree’s traversal overhead.
Makalu is 22% and 12% slower than malloc and libvmmal-
loc, respectively. PMDK and nvm_malloc are 25% and 10%
slower than Makalu, respectively.

Garbage Collection. Many indexes support non-blocking
lookups [60–62] to improve the read performance. Lazy GC
mechanism is necessary in such implementations. An item
to delete is firstly labeled as logically deleted before it is
physically deleted for avoiding dangerous concurrent accesses
from other threads. After a grace period, GC threads sweep
and collect the logically deleted items.

For example, epoch-based GC [63] is a commonly used
strategy for lazy GC [60, 61, 64]. However, a volatile epoch-
based GC implementation may incur memory leaks in NVM
because it does not persist the metadata of labeled garbage
data. After restart, these garbage data will be unreachable.

A naïve way to address this problem is to persist the meta-
data of labeled garbage data for every metadata modification.
We compare the volatile and naïve persistent epoch-based GC
in FAST&FAIR, which supports lock-free lookup operations
and needs a GC mechanism. As shown in Figure 4, we see
that the performance of persistent epoch-based GC is 25.7%
worse than the volatile GC.

1not open-sourced means that we are not sure what it uses. no need means
that it does not need to consider this factor.
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Table 3: Optimizations on practical aspects in ROART.

ROART Design
Functionality Leaf Compaction (§3.2) to optimize range queries.

Performance

Entry Compression (§3.3) to use only one persistent
instruction for structural information.
Selective Metadata Persistence (§3.3.1) to reduce the
amount of persisted metadata.
Minimally Ordered Split (§3.3.2) to reduce sfence
instructions in internal node split.

Correctness

non-temproal store to resolve anomaly (§3.4.1).
DCMM (§3.4.2) to prevent memory leaks with minimal
persistence during allocation. Instant Restart to
eliminate the long recovery time for DCMM.

Post-crash GC [22, 54–56] reduces the persistence over-
head during normal operations. We test the recovery time of
Makalu [54] with post-crash GC in Figure 5, and find that
the recovery time increases linearly as the amount of data
increases.

We would like to design a GC solution that neither incurs
the persistence overhead in the naïve epoch-based GC nor
suffers long recovery time of the post-crash GC.

In summary, Table 2 compares the functionality and cor-
rectness features of recent studies. We find that most studies
do not consider all these aspects (BzTree takes these into ac-
count, but it suffers heavy persistence overhead [8]). Thus,
there are still a lot of opportunities for improvement.

3 Design of ROART

Based on the discussion and analysis above, we propose a
persistent index, ROART, which takes the three aspects into
account. Table 3 summarizes the distinct features of ROART.

3.1 Radix Tree and its Persistent Variants
A radix tree is a search tree in which each node represents a
chunk of bits in the key. The key in a leaf node equals to the
string constructed along the path, starting from the root to the
corresponding leaf node. Suppose one node stores s bits of
a key. The node has at most r = 2s children. r is called the
radix of the tree. ART [49, 50] is a space-efficient radix tree.
Its radix is 256 and each node represents a 1-byte character
(8-bit, r = 256 = 2s, s = 8) of the key. We will discuss its
node types in §3.3.

Path Compression. The height of the radix tree can be re-
duced by path compression [49], as illustrated in Figure 6.
A node with only one child is merged into its child, and the
character it represents is merged into the prefix of its child.

Node Split. With path compression, node splits may happen
during insertions. Node splits are divided into two categories,
i.e., internal node split and leaf node split, as shown in Fig-
ure 7. An internal node split occurs when a new insertion (e.g.,
L3) mismatches the prefix of an internal node (old). The node
new is created and inserted into the tree, which points to L3

path	compression

L0 L1 L2

L0 L1

L2

L0 L1

L2

mismatch	
at	old

internal	
node	split

mismatch	
at	L2

leaf	node
split L0 L1 L2 L3

L0 L1

L2
L3

insert L3

new

old
old

Figure 6: Path compression in radix tree.

path	compression

L0 L1 L2

L0 L1

L2

L0 L1

L2

mismatch	
at	old

internal	
node	split

mismatch	
at	L2

leaf	node
split L0 L1 L2 L3

L0 L1

L2
L3

insert L3

new

old
old

Figure 7: Two ways of node split.

and old as its children. The prefix of old will be updated. A
leaf node split occurs when a new insertion (L3) mismatches
the key in a leaf node (L2). A new node pointing to both L2
and L3 will be created and inserted into the tree.

Persistent Variants. Because of ART’s efficiency, most per-
sistent radix trees are based on ART. The ART implementa-
tion in WORT [19] supports only single thread, and uses a sep-
arate slot array and a bitmap in its node to help locate entries.
However, this incurs extra persistence overhead. RECIPE [24]
proposes a method to convert any volatile data structure to
its persistent counterpart. Based on this method, P-ART is
directly converted from the volatile ART-ROWEX [50]. How-
ever, this leaves many opportunities for persistence optimiza-
tions. Neither WORT nor P-ART has optimized range queries.

3.2 Our Solution: ROART Structure
Compared to B+-Trees, the radix tree performs poorly in
range queries because each leaf node stores only a pair of key
and value, and leaf nodes can be on many different levels in
the tree. A range scan has to visit a large number of non-leaf
nodes on different levels in addition to leaf nodes, incurring
significant overhead. We propose leaf compaction (LC) to
compact the pointers of leaf nodes into a leaf array in the
radix tree. A leaf array can contain up to m leaf pointers. If a
subtree of the radix tree has less than or equal to m leaf nodes,
the subtree is compacted into a leaf array. (We set m = 64
in our implementation.) For simplicity of presentation, the
figures in this subsection use m = 4.

Figure 8(a) and 8(b) show the structural differences be-
tween ART and ROART with the same leaf nodes. We see
that the subtrees rooted at B and D are compacted into leaf
array F and G, respectively. For range queries, leaf com-
paction can effectively reduce the number of pointer chas-
ing in the different levels of the tree. For instance, to run a
range query covering L0−L5, ART dereferences 15 pointers
(A−B−C−L0−L1−C−B−L2−B−A−D−L3−E−
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Figure 8: Leaf compaction in ROART.

L4− L5), while ROART requires only 11 pointer derefer-
ences (A−F−L0−L1−L2−F−A−G−L3−L4−L5).

We modify the index operations to support leaf compaction.
For lookup, a reader searches the tree as before until it reaches
a leaf array. It has to check each leaf node that the leaf
array points to, which can be costly. To minimize this ef-
fect, we embed a 16-bit fingerprint (hash value) [17, 18] of
each leaf key into the pointer in the leaf array (current ar-
chitectures support only 48-bit addresses), represented as
fingerprint: 16-bit | address: 48-bit . In this way, the reader com-

pares the fingerprint of the search key with the fingerprints in
the leaf array to filter out most unnecessary cases. The proba-
bility of false positives is low (e.g., < 0.001 for m = 64).

For insert, when it reaches a leaf array, a writer checks to
see if the key already exists. If not, the writer chooses an
empty slot to insert, as shown in Figure 8(d). The complex
case is when the leaf array is full and the leaf array splits, as
shown in Figure 8(e). Here, the writer wants to insert a new
leaf L7 into leaf array F , which is already full. Note that all
keys in F correspond to a subtree in the original radix tree,
and therefore share a common prefix. To split, we need to find
the first byte position, denoted as P, where the keys diverge.
We call the P-th byte as the identifying byte. We divide the
keys into subsets based on their identifying bytes. We build
a leaf array for each subset, and create a new internal node,
which contains each identifying byte and the pointer to the
associated leaf array. For example, in Figure 9, a leaf array
with four leaf pointers is to split into three new leaf arrays.
The keys diverge at the 5th byte, i.e. P = 5. The keys are
divided, and then new leaf arrays are created. Note that the
cost of a leaf array split is high, but fortunately, this is a rare
operation.

For update and delete, the procedure is similar to lookup.
After the matching key is found, the corresponding modifica-

L1: 12345678
L2:	12347789
L3:	12347890
L4:	12349990

P

Leaf	array	split

L1:	12345678

L2:	12347789
L3:	12347890

L4:	12349990
Figure 9: An example of leaf array split.
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Figure 10: Node types in ART.

tion or deletion is performed.
For range query, the only difference with ART is that keys

in a leaf array are not sorted, but keys are ordered between
leaf arrays. Thus, we only need to check/sort the begin and
the last leaf arrays to ensure that the return values are within
the requested range. If values need to be fully sorted before
returned, it will bring about 8.9% performance degradation
with some optimizations, e.g., by skipping the prefix of keys
and comparing only the different parts of keys.

Interestingly, leaf compaction can improve not only range
queries but also traversals and insertions. Traversal is an essen-
tial step in all operations (lookup/insert/update/delete/scan).
Leaf compaction tends to reduce the root-to-leaf path lengths,
as can be clearly seen in Figure 8(a) and (b). Shorter path
lengths are beneficial to traversals. Moreover, when a new
insertion mismatches the key in a leaf node, ART incurs a
leaf node split (Figure 7) while ROART simply inserts the
new leaf in the leaf array, reducing the number of persistent
instructions. (Please see Table 4 for detailed counts.)

In summary, leaf compaction has several benefits: (i) de-
creasing the number of pointer chasing for range queries, (ii)
reducing root-to-leaf path lengths and traversal overhead, (iii)
reducing persistence overhead of insertions. We will evaluate
the benefits of this structure in §4.

3.3 Reducing Persistence Overhead
Figure 11 shows the node structures of ROART, which are
based on the design of ART. Figure 10 shows the four types
of nodes in ART that can store up to 4, 16, 48, and 256 entries,
respectively. Each entry contains a byte and a child pointer.
The byte is equal to the character represented by the corre-
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sponding child node. In N4 and N16, bytes and pointers are
stored in Byte array and Pointer array, respectively. In
N48, Child index has 256 slots so that bytes can be used as
an index to search in Child index to find the location of the
corresponding child pointer, because the range of a byte is
0-255. N256 directly has an array with 256 pointers. A node
expands to a larger node type when it is full and a new entry
is to be inserted, and shrinks to a smaller node type when the
number of entries is below a threshold.

In ROART, we propose entry compression (EC)
to pack the key byte into the pointer (where 48-bit
are used) in N4, N16, and N48. The resulting entry
empty: 8-bit | key: 8-bit | pointer: 48-bit is called Zentry, as

shown in Figure 11. An invalid Zentry (for a deleted or
unused slot) is set to 0. Since a Zentry is 8-byte and can
be updated atomically, compared to ART, EC reduces one
persistent instruction for persisting each entry in ROART.

3.3.1 Selective Metadata Persistence

We observe that not all metadata need to be persisted for
correctness. For example, Nextpos and Count in the header
indicate the next empty entry slot and the number of used
slots. The Bitmap in the leaf array shows which leaf array
entry is in use. They can all be computed by scanning the
Zentry or the pointer array, where empty slots are set to 0.
Moreover, the Byte array in N16 is used to accelerate search
with SIMD instructions. It can be rebuilt by retrieving the
embedded key byte from each Zentry. The Child index in
N48 can be restored in the same way. Finally, Lock is used for
concurrency control and can be cleared upon crash recovery.

Based on this observation, we propose selective metadata
persistence (SMP) to selectively persist a subset of the meta-
data and recompute the rest of the metadata after recovery. As
shown in Figure 11, volatile metadata are highlighted with
white background. Fields with grey background are persisted.

Traditional recovery needs to suspend processing requests
and scan the whole indexes, which incurs long recovery time
as the amount of data increases. Inspired by the generation
lock in NV-Heaps [65], we implement selective metadata per-
sistence using generation numbers to hide the recovery over-
head. ROART maintains a global generation number (GGN)
in NVM. GGN is increased upon each restart. Each node
in ROART has its own persistent node generation number
(NGN). When accessed, if NGN equals to GGN, the metadata

Table 4: Persistence analysis. Two values are the numbers of
clwb and sfence respectively (lower is better).

Name Insert Split

N4 N16 N48 N256 Leaf Internal
ROART 2, 2 2, 2 2, 2 2, 2 2, 2 4, 2
P-ART 2, 2 3, 3 3, 3 2, 2 3, 3 4, 4
WORT 3, 3 4, 4 3, 3 2, 2 3, 3 4, 4

in the node is up-to-date. Otherwise, the metadata in the node
is restored, then GGN is assigned to NGN. Per-node latch for
recovery (implemented by using flags in memory and CAS
instructions) protects the concurrent access on the same node
from multiple threads. In this way, after restart, ROART does
not suspend normal operations for recovering the whole lost
metadata. Instead, it restores the metadata on demand and at
the same time executes normal operations.

3.3.2 Minimally Ordered Split

Internal node split is costly as shown in Figure 7. It has four
steps: (i) allocating a new leaf L3, (ii) allocating an internal
node, marked as new, with two children (L3 and node old),
(iii) changing the pointer (from old to new) of parent node, (iv)
updating the prefix of old (not shown in the figure). Without
optimizations, the four steps need four sfence instructions.

We observe that the order of these four steps can be relaxed.
Step (i) and step (ii) are not visible to other threads, we can use
only one sfence after initializing the two nodes. Step (iii) and
(iv) cannot execute atomically. Under concurrent execution,
readers may see the incomplete split with inconsistent prefixes.
Note that the depth of a node (including the prefix) stays
constant. This property can be exploited to detect inconsistent
prefixes, as is also used in other work [19, 50]. Once such
inconsistency is detected, it is easy to repair the inconsistency
by recomputing the prefix. Consequently, the order of step
(iii) and step (iv) is not important.

ROART performs the internal split as follows. It performs
step (i), (ii) and (iv), flushes the modified cache lines, then
calls a single sfence. After that, it performs step (iii), flushes
the modified cache line, and calls a second sfence. In this
way, ROART reduces the numbrer of sfence instructions of
an internal split from four to two.

3.3.3 Persistence Analysis

Table 4 compares the number of persistence instructions, clwb
and sfence, for insert and split operations in ROART, P-
ART [24], and WORT [19]. ROART incurs the smallest num-
ber of persistence instructions among the three indexes.

3.4 Making ROART Correct
3.4.1 Anomaly Resolution in ROART

ROART employs a concurrency control strategy similar to
ART-ROWEX [50], i.e., lock-free read and lock-based write.
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Readers may see incomplete write operations, resulting from
inconsistency between volatile and persistent states. So extra
protection is required. §2.3.1 discusses several methods to
address this problem. We adopt non-temporal store [24]
to fix the potential anomalies in ROART.

3.4.2 Delayed Check Memory Management

NVM allocation and GC have a large performance impact on
practical indexes (§2.3.2). We propose a new memory man-
agement method, called DCMM, which uses post-crash GC
to minimize the persistence during allocation/deallocation,
and supports instant restart to eliminate the waiting time after
restart. To reduce the contention in memory allocation for
multiple threads, DCMM uses a two-layer architecture, as in
Figure 12.

First Layer. This layer is a global memory manager that
manages the entire NVM area at the granularity of pages.
The page size is adjustable, and defaults to 128MB [53, 56].
The global memory manager maintains a global naming
space. It contains the roots of indexes and an offset field
indicating the offset of the last allocated page. These are
persistent fields. There are also two volatile fields, i.e.,
owner_mapping and free_page_list. The former keeps
a map between each page and its owner thread, and the
latter implements a volatile lock-free linked list for recy-
cled free pages. A thread requests a new page by searching
free_page_list. If free_page_list is empty, it uses an
atomic fetch-and-add to obtain the offset and increase
the offset by the page size, then persists the offset.

Second Layer. For each application thread, a thread-local
allocator performs allocation using multiple block classes
with different sizes. Each block class is maintained by
a volatile linked-list, called free_chunk_list. A thread
requests a page from the first layer and divides it into
free_chunk_lists, like in the buddy system [66].

Garbage Collection. DCMM implements post-crash epoch-
based GC for supporting lock-free reads and lazy deletions.
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Figure 13: The procedure of recovery.

We implement a decentralized version [60] of epoch-based
GC for better scalability.

Persistence Overhead. As discussed in §2.3.2, the allocator
based on post-crash GC does not need to persist any metadata
during normal operations. Therefore, persistence overhead
only occurs in the first layer, for persisting offset. This
overhead is amortized by multiple memory allocations in the
second layer. Most allocations do not invoke the first layer.

Recovery Processing. Upon recovery, owner_mapping can
be simply reset by mapping each page in the range [0, offset)
to application threads in the round-robin fashion. Other
volatile information can be restored by the recovery process
in three steps (Figure 13) : (i) Recovery threads traverse all
NVM areas used by the application (i.e., starting from the per-
sistent index root pointers and traversing the trees), and collect
all used chunks with their description tuples (address, size).
(ii) Free chunks can be calculated based on the used chunks in
each page. (iii) Free chunks are put in the free_chunk_lists
and free pages are put in the free_page_list.

Instant Restart. The recovery process as described in the
above can take a long time as the amount of data increases
(Figure 5). In order to reduce the waiting time after restart,
we propose instant restart for DCMM. Note that offset in
the first layer is persisted. Therefore, after restart, we can
immediately allocate new pages after offset without waiting
for other metadata recovery to complete. (If offset exceeds
the current NVM file limit, a new NVM file will be created and
opened for allocation [53, 56].) Hence, we can immediately
allow front-end operations and provide memory allocation
service instantly after restart, while the background recovery
threads run in parallel. In this way, DCMM avoids the front-
end from waiting long time for the recovery to complete.

Multi-threading Optimization. The background recovery
process can be accelerated by multi-threading. Consider the
three steps in recovery processing. Step (i) can be parallelized
based on the data structures. For example, multiple threads
can be used to traverse different subtrees of ROART. The
(address, size) pairs produced during traversal can be put into
different sorted arrays based on address ranges. Then, Step
(ii) and (iii) can examine different sorted arrays and collect
free chunks in parallel.
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4 Evaluation

Our evaluations consist of four parts to reflect the performance
improvements of each proposed design.
1. Overall Performance Comparison. We choose several
tree-based data structures in experiments. For a fair compari-
son, some modifications are necessary such as adding DCMM
to some indexes, and implement missing functions.
2. Detailed Test of Each Design. Several aspects are evalu-
ated: (i) performance improvement by each optimization, (ii)
range query (scan) performance with different numbers of
keys, (iii) fixed-sized (8-byte) keys performance, (iv) skew
tests, (v) latency tests, (vi) space consumption, and (vii) re-
covery and instant restart.
3. NVM Allocators. We evaluate DCMM with sev-
eral open-sourced persistent allocators, e.g., PMDK [51],
nvm_malloc [52] and Makalu [54].
4. Real-world System Evaluation. We incorporate ROART
into a real-world system: Memcached [67]. The core index
in Memcached is a volatile hash index and our modification
enables Memcached to support persistent storage.

4.1 Evaluation Setup
All evaluations use a Dell PowerEdge R740 server with four
Intel(R) Xeon(R) Gold 5220 processors supporting clwb,
6×128GB Optane DC PMM per socket. The processor has
32KB L1-cache, 1MB L2-cache, and 25MB L3-cache. The
persistent memory is managed by a DAX file system [68]
and mapped to a pre-defined address. We choose five other
tree-based indexes to compare the performance with ROART.
P-ART. P-ART [24] is a persistent counterpart of ART-
ROWEX [50]. For a fair comparison, we use DCMM in
P-ART, and implement its missing functions (e.g., update
operations, and selective metadata persistence for metadata).
PMwCAS-ART. PMwCAS-ART is a baseline we implement
by using PMwCAS [23]. PMwCAS allows atomically mod-
ifying multiple 8-byte words in NVM and uses PMDK to
guarantee the memory safety. We leverage the persistent prim-
itives it provides to modify ART-ROWEX.
FAST&FAIR-DCMM. FAST&FAIR [5] is a state-of-the-art
persistent B+-Tree (§2). We modify it to support variable-
sized keys and use DCMM to manage NVM.
SkipList-DCMM. We modify the open-source lock-free
SkipList [22] to support variable-sized keys and use DCMM.
BzTree. BzTree [6] is a lock-free persistent B+-Tree based
on PMwCAS. It can naturally support variable-sized keys by
using slotted pages.

4.2 Overall Performance
To evaluate the overall performance, we test micro-
benchmarks with 4 threads and YCSB benchmark. For the
micro-benchmarks, keys are randomly generated with sizes
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Figure 14: Microbench of six indexes under 4 threads.

between 4 to 128 bytes, and values are fixed as 8 bytes. An
8-byte value can represent an indirect pointer, commonly used
in DBMS [32,33]. Each test firstly warms up using 30 million
KVs [5, 7, 24], which exceeds the size of the L3-cache and
reflects the performance of NVM. After warming up, each
test runs 20 seconds for different workloads and reports the
average throughput.

Micro-benchmarks contain the operations of lookup, insert,
update, remove and scan. The results are in Figure 14. The
lookup performance of ROART is 2.562 Mop/s which is
faster than P-ART (2.129 Mop/s) and PMwCAS-ART (2.06
Mop/s). The main improvement comes from leaf compaction
which lowers the height of the tree and benefits traversal.
BzTree is fast because its slotted-page node layout has good
cache locality for supporting variable-sized KVs and binary
search. ROART is 2.29× and 4.98× faster than FAST&FAIR
and SkipList respectively, because FAST&FAIR cannot use
binary search inside its nodes and SkipList suffers from poor
cache locality.

The insert performance of ROART is significantly
better (1.704 Mop/s) than all other five indexes
(1.3/5.16/4.15/5.24/6.65×). There are several reasons
for the improvement. (i) DCMM has higher allocation perfor-
mance than PMwCAS (PMDK). (ii) Less persistent related
instructions (clwb and fence) in ROART (§3). PMwCAS
suffers from more persistent instructions, P-ART makes
no optimization, and FAST&FAIR also causes multiple
persistent instructions once the entry moving exceeds one
cache line. (iii) Compared with B+-Tree (FAST&FAIR,
BzTree), no rebalance operations are required in ROART.

For the update operation, ROART can achieve 1.6
Mop/s throughput and outperforms the others up to
1.16/3.18/1.86/3.9/3.61×. The major performance differences
are similar to lookup operation. For the remove operation,
SkipList performs very poor, and others are similar. The main
reason is that SkipList has a complicated remove operation
and suffers from many retries. For the scan operation, with
leaf compaction, the performance of ROART can outperform
P-ART up to 1.65× and is close to FAST&FAIR/BzTree.

We use YCSB [69] benchmark to generate five workloads,
which are (a) write-intensive (50% lookup and 50% insert),
(b) read-intensive (95% lookup and 5% insert), (c) read-only,
(d) insert-only, and (e) scan-insert (95% scan and 5% insert).
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Figure 15: Performance of YCSB.

The results of five workloads are shown in Figure 15.
In workload (a), ROART outperforms P-ART up to 1.27×

and other four indexes up to 2.78∼6.57× using 36 threads.
The main performance gain is from its less traversal and per-
sistence. In workload (b), ROART outperforms the other five
indexes by 1.17∼8.27× using 36 threads. In workload (c),
the performance of all indexes is scaled, but ROART can still
outperform others by 1.15∼5.13×. In workload (d), due to
the influence of NUMA, performance of all indexes begins to
decline after more than 18 threads. ROART decreases 27%
and P-ART decreases 30% from 18 threads to 36 threads. In
workload (e), ROART can perform 1.52× and 1.53× better
than P-ART and FAST&FAIR. It is only 3% and 20% slower
than lock-free BzTree in the cases of 18 and 36 threads, be-
cause BzTree stores variable-sized keys and values in the
nodes, instead of extra data areas, located by metadata in the
head of nodes.

4.3 Effects of Each Design
1. Improvement of Each Optimization in ROART. We
test the performance improvement of each optimization (§3)
in Figure 16. The raw version is the implementation of
ROART without the four optimizations (SMP/EC/MO/LC).
Selective metadata persistence can improve by 13% and
10.1% for insertion and deletion. Entry compression can bring
about 9.7% and 10.8% improvement for insert and remove
operations. Minimally ordered split reduces the fence instruc-
tions for internal node split so that it can improve the insert
performance by 4.8%. Leaf compaction can lower the height
of radix tree and benifit every operation, especially scan. It
can bring 17.2%/13.5%/14.7%/8.4%/64.8% improvement for
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Figure 16: Performance improvement of each optimization.
(SMP: Selective Metadata Persistence, EC: Entry Compres-
sion, MO: Minimally Ordered split, LC: Leaf Compaction)
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Figure 18: Performance with fixed-sized keys.

the five operations respectively.

2. Range Queries with Different Key Numbers. In Fig-
ure 17, we evaluate the range query performance by scan
operations with different key numbers, and the necessary pa-
rameters of scan are the maximum and minimum keys as
well as the number of required keys. The result shows that
ROART with LC can outperform the version without LC by
1.07∼2.01×. When the number of keys is less than 50, the
improvement brought by LC is not very much, and when the
number of keys is more than 100, the performance is improved
at least by 1.65×.

3. Performance with Fixed-sized Keys. Many indexes are
optimized for fixed-sized KV, such as FAST&FAIR. We test
the performance of ROART (without any optimization for
fixed-sized keys) while processing 8-byte fixed-sized keys,
compared to P-ART, FAST&FAIR and SkipList. The results
are shown in Figure 18. SkipList runs slowest because of
its poor cache locality. FAST&FAIR outperforms P-ART by
up to 1.09/1.21× in lookup and update because fixed-sized
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Table 5: Latency tests under write-intensive workload (50%
lookup and 50% insert) with 16 threads (lower is better).

latency (us) ROART P-ART PMwCAS-ART
avg. 1.2 1.5 3.4
p99 3.5 4.4 8.8

latency (us) FAST&FAIR SkipList BzTree
avg. 3.5 4.4 4.2
p99 11.8 8.9 9.5
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Figure 20: Space consumption of ROART and P-ART

optimized FAST&FAIR has better cache locality. But with
the optimization LC, ROART can outperform FAST&FAIR
in lookup even with fixed-sized keys, and it is only sightly
slower than FAST&FAIR in update. For scan with fixed-sized
keys, B+-Tree is still the better index than radix tree.

4. Skew Tests. Figure 19 shows the experiment under a
skewed workload (50% lookup and 50% update with 16
threads). The cache brings more benefits when the coeffi-
cient is smaller than 0.85. When larger than 0.85, ROART,
P-ART and FAST&FAIR all suffer from the lock contention.
The performance of ROART and P-ART drops about 28%
and 29.5% from 0.5 to 0.99, while FAST&FAIR drops about
80.3%. Performance of SkipList improves because of its lock-
free manner. BzTree drops about 87% because it has a com-
plex structure and heavy persistence overhead [8] although it
also has a non-blocking design.

5. Latency Test. Latency numbers of each index are shown
in Table 5 under a write-intensive workload (50% lookup
and 50% insert) with 16 threads. In average latency, ROART
can outperform all other indexes by 20% ∼ 73% because of
its faster traversal. In p99 latency, ROART can outperform
all other indexes by 21% ∼ 71%. SkipList and BzTree is
lock-free design so that their p99 latencies increase less than
other four lock-based indexes. In ROART, we make no extra
optimization on tail latency, which is orthogonal to our work.

6. Space Consumption. We introduce leaf arrays in ROART,
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Figure 21: Data structure recovery and instant restart.

which does not exist in ART. In our implementation, the size
of leaf array is predefined, which may cause the waste of
space. So we evaluate the space consumption of ROART and
P-ART to show the impact of leaf arrays. In Figure 20, when
the amount of keys is smaller than 8M, the space consump-
tion of ROART is larger than P-ART because most of the
entries in leaf arrays are empty and much space is wasted.
As the amount of keys increases and empty entries are filled,
ROART consumes less space than P-ART. Under extreme
cases, if each leaf array only has one valid entry, the space
waste of ROART will become serious. We think this case
is rare because it is hard to construct. To solve this problem,
we can use the approach of ART to provide leaf arrays with
various sizes.

7. Recovery and Instant Restart. In Figure 21(a), we test
normal recovery time with different key numbers. With 128M
keys (about 25 GB in total of tree size), data structure recovery
takes 19 seconds. With reclamation of free memory (recovery
for DCMM), it takes 27 seconds. In this case, free memory
chunks in 195 pages (25 GB in total) are reclaimed.

All metadata of data structure and allocator will be restored
after restart. So we introduce selective metadata persistence
(§3.3.1) and instant restart (§3.4.2) to hide the recovery over-
head of data structure and allocator respectively. The effects
of the two techniques are illustrated in Figure 21(b). The test
uses 32M keys and 1/36/72 background reclamation threads
respectively. The simulation injects a crash at the 11th sec-
ond, halting for 5 seconds. After restart, ROART can process
requests immediately. The recovery of data structure can be
delayed until nodes are accessed. Background threads per-
form the reclamation of free memory chunks in parallel with
foreground threads. Experiments show that more threads ac-
celerate recovery process, but causing a greater impact on the
foreground performance.

4.4 Performance of NVM Allocators
We make a comparison in Figure 22 between DCMM and
other open-sourced persistent allocators, e.g., PMDK [51],
nvm_malloc [52] and Makalu [54]. The test workload is to
continuously allocate 64-byte chunks, write and persist them.
The results show the performance of each thread. PMDK is
slow but scalable, the scalability of nvm_malloc and Makalu
is poor. DCMM has better performance and scalability than
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Figure 23: Evaluations in Memcached.

Makalu because DCMM allocates larger pages in a lock-free
manner in the first layer, while the page size is only 4K in
Makalu and the design in its first layer is lock-based.

There are some other persistent allocators. PAllocator [53]
is logging-based with good scalability, but it also suffers extra
persistence during allocation/deallocation. PMDK [70] also
has a post-crash GC technique, but it is still logging-based.
NV-Epochs [22] provides post-crash GC but only supports
fixed-sized allocation, and suffers long recovery time. NVM-
Reconstruction [55] is a Clang/LLVM extension and runtime
library that provides the reconstruction of persistent heaps.
Ralloc [56] improves the performance of allocators with post-
crash GC, but it still needs a blocked recovery process.

4.5 Real-World System Evaluation
We modify Memcached 1.4.17 to replace its hash
index to three persistent indexes, e.g., ROART, P-
ART and FAST&FAIR, for persistent storage. We use
memtier_benchmark to test the performance of set and get
operations with single thread. In Figure 23, ROART can
outperform P-ART and FAST&FAIR by up to 1.07× and
1.38× in set operations, 1.06× and 1.19× in get operations.
The evaluation confirms our previous experiments.

5 Related Works

ROART well resolves the three practical aspects mentioned
in §2. Many other related works not mentioned before have
also made a lot of efforts.
Persistent Tree-based Indexes. CDDS Tree [1] firstly pro-
poses a multi-version persistent B+Tree design, using copy-
on-write techniques without overwriting the original entry, but
suffers heavy persistence overhead. DPTree [12] proposes a

method to batch modifications in DRAM buffer to reduce per-
sistent overhead, but it needs a background merging process
which may stall foreground requests and consume extra band-
width of NVM. µtree [13] focuses on tail latency in persistent
indexes, which is an orthogonal work.
Persistent Hash Indexes. Persistent hash indexes can sup-
port fast point access, but has difficulties for range queries.
Level hashing [15] proposes a novel two-level hash table
structure, reducing the overhead of resizing. Clevel hash-
ing [18] is the multi-thread version of level hashing, based
on a lock-free manner and concurrent resize operation in
the background. CCEH [16] proposes a three-layer structure
based on extendible hashing to reduce NVM writes. Dash [17]
uses optimistic concurrent control to improve the parallelism
of CCEH, and proposes bucket load balancing strategy to
improve load factor of hash table.
Universal Conversion. The general method usually gives a
simpler solution to achieve persistent indexes, but less op-
timization for performance. Izraelevitz et al. [21] design
an approach transforming any non-blocking transient data
structure to a non-blocking durable one, by adding flush and
fence instructions after read or store instructions, but suffer-
ing heavy persistence overhead. David et al. [22] propose a
link-and-persist method to implement log-free concur-
rent data structures and guarantee durable linearizability. But
it can only be applied to 8-byte store/CAS instructions.

6 Conclusion

This paper firstly analyzes three practical aspects, including
functionality, performance and correctness. Then ROART is
proposed with several optimizations, i.e., (i) leaf compaction,
(ii) entry compression, (iii) selective metadata persistence,
(iv) minimally ordered split, and (v) instant restart. Finally,
evaluations indicate that ROART can outperform other state-
of-the-art indexes by 1.17∼8.27× under various workloads.
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