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Abstract—Due to the escalating demand to analyze large
graphs, many organizations are now collecting billion-level prop-
erty graph datasets, concurrently executing many complex graph
queries against them, and expecting interactive-level response
latency. However, such requirements are particularly challenging
because of the notoriously irregular data access pattern and
complex dependencies between heterogeneous subtasks. Despite
the widespread availability of many-core CPUs and high-speed
networking in modern datacenters, existing distributed graph
query systems struggle with their inherent inefficiencies, resulting
in low hardware utilization and poor query performance on
these state-of-the-art hardware. To address these challenges, we
introduce the Partitioned Stateful Traversal Machine (PSTM),
which extends the Gremlin graph traversal machine. PSTM
retains the expressive power of the Gremlin query language,
enabling it to accommodate a wide range of graph query tasks,
including traversal, pattern matching, filtering, and result ag-
gregation. It additionally introduces query memoranda, allowing
for more efficient implementation and execution of numerous
graph queries in distributed environments. Moreover, PSTM
facilitates various system-level optimizations, such as massively
parallel execution, overlapping computation with communication,
locality-aware data access, and lightweight progress tracking.
Building upon PSTM, we develop GraphDance, a distributed
graph database featuring an efficient asynchronous PSTM run-
time. Our evaluations, conducted on an 8-node cluster, show
that GraphDance achieves millisecond-level query latency for
complex queries on terabyte-scale graphs, with an average latency
reduction of 89.2% across all interactive complex queries in the
LDBC SNB benchmark compared to existing distributed graph
query systems.

I. INTRODUCTION

A. Motivation

As the scale of graph datasets continues to rise, there is
a growing necessity for the efficient management, analysis,
and serving of graph data. This surge has spurred the devel-
opment of specialized systems capable of handling a wide
range of graph-related workloads. Among different kinds of
workloads, analytical complex graph queries are commonly
used in real-time applications such as information retrieval,
recommendation, and fraud detection [1], [2]. For instance, a
social networking application may suggest new friends to a
user by selecting the 10 most influential individuals reachable
within k steps of the “knows” relationship from that user.
Figure 1a presents the Gremlin [3] code for implementing
such an example query. Such queries access a large proportion
of vertices and edges in the graph, involving complex query
operations like graph traversal, deduplication, filtering, and
aggregation, and requires millisecond-level latency.

One of the primary challenges in efficiently performing
complex graph queries lies in the size of graph datasets.
Contemporary graphs can scale up to billions of edges and
terabytes of property data, necessitating distributed environ-
ments to process. Moreover, graph queries often contain a
multitude of query operators, which establish complex de-
pendencies between subtasks. These operators also contain
in sparse and irregular acesses to graph data. Furthermore,
the trend in hardware technology has shifted towards the
widespread utilization of multi-core CPUs and high-speed
networks. Modern servers routinely incorporates processors
with tens of cores per socket, presenting enhanced opportu-
nities for the parallel execution of various tasks. Additionally,
networking bandwidth has surpassed 100Gbps, allowing swift
data transfer and communication among nodes. However, these
hardware advancements also present considerable challenges
in designing efficient systems capable of handling diverse
graph queries and fully leveraging the capabilities of modern
computing devices.

To express and handle complex graph queries, many graph
query languages and execution models have been developed
to handle complex graph queries on large graphs. One notable
example is Gremlin [3], a popular graph traversal language
adopted by systems such as Apache TinkerPop [4] and
JanusGraph [5]. In Gremlin, a set of traversers navigates
the graph to execute query tasks. Each traverser maintains
its own state, performs different traversal steps, and may
spawn new traversers. Users can combine various steps to
achieve complex graph traversals and queries. However, the
Gremlin traverser model tightly couples all execution states to
individual traversers, hindering the implementation of certain
algorithms and optimizations. For instance, during a multi-
hop graph traversal shown in Figure 1, it is often necessary to
remove duplicated traversers to avoid redundant computation.
However, Gremlin lacks the mechanism for a traverser to
determine whether another traverser has already visited the
current vertex. Although Gremlin includes a Dedup step to
address this issue, common implementations tend to execute
it within a single thread, leading to performance bottlenecks
in parallel systems. Similar challenges arise with general
operators such as join and aggregation, which are not well-
suited to the Gremlin traverser model.

Despite the expressive power of the query language, an
efficient implementation of the execution engine is also critical
to a high-performing graph query system. The recommended



g.V($start).as(’start’).
repeat(out()).times($k).
emit().dedup().
where(neq(’start’)).
order().by(’weight’, desc).

by(’id’, asc).
limit(10)

(a) Gremlin code
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g.V($start).as('start') .out() .dedup() .where(neq('start'))

.order()
    .by('weight', desc)
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.limit(10)
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(b) Optimized traversal program

Fig. 1: An example k-hop neighborhood query. The query requires finding all vertices within k hops from $start and
returning the 10 most weighted (influential) ones, with ties broken by vertex id.
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Fig. 2: Comparison of different execution models when executing the plan in Figure 1b. Only Expand, Dedup, and Top-
k are plotted for ease of demonstration. (a) The example partitioned graph. (b) Execution with the BSP model. Traversers
shall wait for global barriers before moving to adjacent vertices, causing load imbalance and hardware underutilization. (c)
Execution with the asynchronous model. Traversers are not synchronized at superstep boundaries; however, spawning remote
asynchronous traversers incurs inefficient I/O patterns. Also, centralized result aggregation and progress tracking deteriorate
the query latency. (d) Execution with PSTM. Communications across partitions are organized as mini-batches. Aggregation
and termination detection are implemented in a distributed and efficient manner.

implementation of Gremlin [3] adopts the bulk synchronous
parallel (BSP) protocol [6]. In this protocol, the query exe-
cution is organized into distinct phases, or supersteps. Each
superstep is dedicated to processing a specific type of opera-
tion in parallel, followed by a global barrier to synchronize
and exchange data between different workers. BSP-based
systems often face practical challenges that lead to suboptimal
performance [7], [8] in graph workloads. A notable issue
is the straggler problem, particularly prevalent in complex
queries where each superstep only accesses a dynamic and
sparse subset of the graph. Moreover, the inherent separation
of computation from communication in the BSP model results
in non-overlapping utilization of different hardware resources.

Recent research has also explored asynchronous systems
for graph processing [9], [10] to avoid the shortcomings of
the BSP model. These frameworks enable worker threads to
execute tasks and send messages independently without global
barriers. This advancement improves hardware utilization,
increases flexibility, enhances the chance for concurrent task

execution, and effectively addresses the straggler problem.
However, transitioning to asynchronous execution for complex
graph queries also presents its own challenges on modern
hardware. Most importantly, as asynchronous systems decom-
pose the query into fine-grained subtasks, the additional over-
head of task scheduling and progress tracking may introduce
significant CPU overhead. We find that simplistic methods
for progress tracking may inadvertently introduce significant
overhead. Also, the execution of fine-grained tasks may gen-
erate an excessive number of small and scrappy messages
over the network, which are limited by the message rate of
the networking stack. These challenges must be addressed to
develop an efficient asynchronous graph query system.

B. Our Contributions

To enhance the expressive power of the Gremlin language
and support the development of an efficient distributed graph
query engine, we propose an extension to the original Gremlin
graph traversal machine model. This extension is based on the
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observation that many query operators exhibit the partitionable
property (§III-A). Following this observation, we evolve the
Gremlin machine to the partitioned stateful traversal machine
(PSTM) by integrating the partition-aware query memoranda.
This innovative design allows different traversers to coordinate
with each other without excessive communication and syn-
chronization, supporting efficient expression and implemen-
tation of operations like Dedup and Join. Also, this parti-
tioned model facilitates a high-performance implementation
of distributed asynchronous graph query engine. By providing
partition awareness in the graph traversal model, we unlock
a range of system-level optimizations previously challenging
to achieve in previous graph traversal systems. Moreover, our
tailored implementation of PSTM bridges the gap between the
flexibility and expressiveness of the upper-layer programming
model and the efficiency of the underlying execution engine
which requires fast and lightweight progress tracking, opti-
mized data placement, and high-throughput message passing.

As an example, our analysis reveals that progress tracking
and termination detection significantly impact the performance
of asynchronous graph query systems, though these aspects
are often neglected. Our experiments have shown that simple
progress tracking can substantially prolong the query latency
by up to 4.46×. To this end, we integrate a novel weight-based
technique for query progress tracking into PSTM, which uses
scalar values to represent task progressions and requires only
a single integer addition per traverser for progress tracking.
We will provide detailed explanations of this tailored progress
tracking mechanism in §IV-A. Moreover, in PSTM, progress
tracking can be parallelized and distributed among all workers.
Each worker accumulates the total progress made by local
traversers and only reports its combined progress to the central
query progress tracker when necessary. By aggregating the
progress of multiple traversers within the same worker, we
significantly reduce the workload of the progress tracker,
thereby enhancing overall query latency.

Based on this innovative model, we developed GraphDance,
an asynchronous distributed graph database system meticu-
lously engineered to achieve both high throughput and low
latency for complex graph queries. We conducted compre-
hensive experiments to assess the performance and scalability
of GraphDance, benchmarking it against leading open-source
and commercial graph query systems. The results demonstrate
that GraphDance is capable of processing complex queries
on billion-scale property graphs with single-digit millisecond
latency, marking a significant improvement compared to the
baseline systems. An average of 89.2% lower latency is
observed across all the 14 complex queries in LDBC Social
Network Benchmark (LDBC SNB) [11]. We also include
further microbenchmarking that sheds light on the perfor-
mance characteristics of GraphDance and the impact of each
implemented optimization. Our code for reproducing these
results is shared in an anonymous code repository, available
at https://anonymous.4open.science/r/GraphDance.

II. BACKGROUND

A. Graph Workloads

To further understand the characteristics of different types
of graph workloads, we categorize them into transactional
queries, interactive complex queries, and offline analytics,
based on their complexity, data access size, and performance
requirements as listed in Table I:

• Transactional queries primarily involve updating ver-
tex/edge data and retrieving vertex/edge properties and
neighborhood information. These queries contain simple
query logic and require minimal data access from the
query. Transactional graph processing systems are ex-
pected to deliver high throughput and very low latency,
and provide ACID guarantees.

• Interactive complex queries are commonly used in
applications like social network recommendations, real-
time fraud detection, and knowledge graph searching.
These queries often access process a significant subset of
the graph via multi-hop traversals, exhibit irregular data
access patterns, and involve complex query logic such as
join, deduplication, and aggregation. These queries also
have strict requirements for query latency to ensure quick
response. For example, a search engine has only about
50ms time budget to render the page, and any queries
from knowledge graphs that fail to complete within this
time limit will simply be aborted [12].

• Offline analytics focus on scanning and analyzing the
whole graph, with typical applications including PageR-
ank [13], community detection, and graph coloring.
Graph analytical systems often execute iterative algo-
rithms, with each iteration running a user-defined pro-
gram over the entire graph [14], [15].

Among all these workload types, interactive complex
queries pose unique challenges due to their extensive and
dynamic data processing needs within tight time constraints.
This paper concentrates on designing graph query systems that
balance their demands for both interactive-level latency and
high throughput.

B. Gremlin Graph Traversal Machine

To address the challenges posed by complex queries, the
Gremlin graph traversal machine [3] is introduced as a gen-
eral framework for defining graph query logic. This model,
widely embraced across modern graph databases [5], [9], [10],
consists of three primary components: a property graph G, a
traversal program Ψ, and a set of traversers T .

The property graph model represents graph data G as a
triplet (V,E, λ), where V is the set of vertices, E is the set of
directed edges, and λ : (V ⊎E)×Key → Value is a function
that assigns properties to vertices and edges as key-value pairs.
Two special edge property keys _src and _dest ∈ V are
used to indicate the endpoints of each edge.

The traversal program Ψ, written in Gremlin code (like
Figure 1a), composes a tree of traversal steps. The traversal
steps allow the traversers to move around the graph, perform
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TABLE I: Characteristics of different graph workloads

Transactional Queries Interactive Complex Queries Offline Analytics
Examples vertex/edge retrieval friend discovery, job referral PageRank, community detection

Typical Benchmark LDBC SNB Short Reads LDBC SNB Complex Reads LDBC Graph Analytics
Accessed Graph Data < 0.01% 0.1% ∼ 10% ∼ 100%
Data Access Pattern very sparse sparse dense

Number of Compute Stages 1 ∼ 3 3 ∼ 10 N/A
Potential Parallelism limited massive massive

Expected Response Time µs- to ms-level ms- to sec-level min- to hour-level
Expected Query Throughput millions QPS per node thousands QPS per node < 1 QPS per node

Theoretical Bottleneck data access latency data access bandwidth data access bandwidth

various query operations, and generate new traversers. Each
traverser t ∈ T is located in a graph vertex µ(t) and executes
a specific traversal step ψ ∈ Ψ.

Sometimes, a sequence of the steps in the traversal program
can be expressed and executed in a more efficient way. Hence,
the Gremlin compiler may apply a range of traversal strategies
to optimize the traversal program [16]. Each traversal strategy
defines a rewriting rule that converts a section of the traversal
into a semantically equivalent yet more efficient form. For
example, the IndexLookUpStrategy replaces a full vertex
scan followed by a filter with an index look-up operation,
reducing the size of accessed data.

As an example, the query presented in Figure 1 will be
compiled and optimized into the following steps:

• An IndexLookup step that identifies the start vertex and
launches an initial traverser on it;

• k Expand steps, during which each traverser t spawns
sub-traversers along vertex µ(t)’s outgoing edges;

• A Filter step that removes start vertices from considera-
tion;

• A Projection step that maps vertex identifiers to their
properties;

• An Aggregation step that compiles the top 10 results.

C. Parallel Processing for Interactive Complex Graph Queries

As the demand for real-time processing of large-scale graph
data continues to grow, distributed graph processing systems
have emerged as a solution to offer various kinds of graph
services. Due to the tremendous data access and computation
involved in complex graph queries, parallel and distributed
graph query engines are essential to meet the stringent time
constraints. In these systems, the graph vertex set V is often
divided into partitions with a hash function H : V → PartId,
where PartId = {0, 1, . . . , nparts − 1} denotes the set of
partitions. Each graph partition can thus be handled by a
separate worker, allowing parallel processing of large graphs.
The traversers in the Gremlin traversal machine are able to
independently and concurrently move around the graph as
dictated by Ψ, exposing the intrinsic intra-query parallelism
of complex graph queries. Such parallelism can be exploited
in different ways to accelerate query processing.

1) BSP Systems: For example, many graph processing
systems [17]–[22] adopt BSP model for parallel execution
due to its implementation simplicity. However, when it comes

to complex graph queries, BSP-based systems face notable
hurdles such as stragglers and low hardware utilization.

2) Asynchronous Systems: To address the constraints of
the BSP model, researchers and industry professionals have
explored the potential of asynchronous execution models in
graph-processing systems. Asynchronous models eliminate
unnecessary dependencies dictated by global synchronization,
enabling worker threads to communicate or launch tasks inde-
pendently. This approach is well-suited for the traverser model
and has the potential to increase execution flexibility, boost
concurrency, and mitigate the impact of stragglers. However,
the shift to asynchronous execution in complex graph query
processing introduces its own drawbacks.

For example, many operators commonly used in complex
graph queries, such as Dedup and Join, require coordination
and interaction among multiple traversers. These operators,
which operate collectively on a large set of traversers, are not
ideal for asynchronous systems. As a result, many existing
asynchronous systems resort to executing these operators with
a single thread, significantly slowing down query processing.

Moreover, detecting query completion in a distributed asyn-
chronous environment presents a significant challenge. This
involves identifying a global quiescent state, where no active
traversers are present in any worker threads, and no tasks
are in transit over the network. In an asynchronous model
where traversers can dynamically and independently spawn
new subtasks, confirming the absence of active traversers
on a global scale becomes difficult. Consequently, existing
asynchronous graph query and analysis systems either revert to
using global barriers or employ more sophisticated techniques
for task termination detection, both of which can substantially
degrade query performance.

Additional challenges include optimizing network band-
width and preventing data races and consistency issues [7], [8].
Asynchronous models, while advantageous for CPU-intensive
tasks, often struggle with message-intensive workloads re-
quiring extensive communication operations. The small-sized
messages generated by asynchronous traversers can often lead
to bottlenecks in the NIC’s IOPS.

III. PARTITIONED STATEFUL TRAVERSAL MACHINES

From the discussion above, it is evident that the existing
Gremlin model does not admit a high-performance distributed
graph query system implementation. Consequently, we have
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extended the original Gremlin model to incorporate a stateful,
partition-aware architecture. We identify that the increment
step execution, along with the partitionable property observed
in many query steps, are two key elements towards efficient
asynchronous execution of graph traversers. Following this,
we detail our extensions to the query execution model, called
partitioned stateful traverser machine (PSTM). We highlight
PSTM’s capacity to facilitate on-demand synchronizations,
demonstrated through an ad-hoc deduplication example. We
also discuss the termination detection mechanism adopted in
PSTM. Finally, we introduce how PSTM handles aggregation
steps and subqueries.

In this paper, we focus on the implementation of a Gremlin-
based distributed graph query system. Due to the powerful
expressiveness of PSTM, our proposed methods can also
be adapted for distributed systems using other graph query
languages by translating those queries into graph traversal
programs. Furthermore, various specialized graph processing
tasks, such as graph pattern matching and graph mining, can
also be expressed using the Gremlin steps (e.g., Expand and
Join), thereby leveraging the advantages offered by PSTM.

A. Efficient Parallel Execution of Query Operators

As outlined in §II-B, Gremlin processes a query by trans-
forming a set of traversers T according to the traversal
instructions Ψ, with each step ψ ∈ Ψ converting input
traversers to output traversers. Many steps, such as Expand
that generates an output traverser for each outgoing edge
and Filter that selectively removes traversers, independently
operate on each traverser. These embarrassingly parallel steps
allow asynchronous systems to enhance processing speeds by
independently executing each traverser in parallel. However,
complex graph queries also include many operators which
requires complex interactions between traversers. For example,
the Dedup step removes duplicated traversers residing in the
same vertex, which is a common operation in graph queries to
reduce the result set size and avoid combinatorial explosion.
Nevertheless, we find that these steps can be efficiently exe-
cuted in asychronous and distributed systems with incremental
execution and traverser partition techniques, respectively.

a) Incremental step execution: Instead of collectively
processing all traversers of such steps with global barriers,
we may handle these operators in an incremental fashion. We
may maintain the internal states of such operators, update the
internal states when inputs become available, and produce new
incremental outputs if possible. Take the Dedup step as an
example. We can maintain the set of visited vertices as S;
whenever a traverser t executing the Dedup step, if its location
µ(t) is already in S, it will terminate directly. Otherwise, µ(t)
is added to S and a new traverser is generated to perform
subsequent steps. By processing traversers incrementally, we
can generate new traversers asynchronously without waiting
for all traversers of the current step to be ready.

b) The partitionable property: Although incremental
processing helps avoid global synchronizations, managing the
internal states of these traversers in centralized workers will

introduce performance bottlenecks. Fortunately, our investi-
gation indicates that many steps adhere to the partitionable
property, which helps parallel execution of such steps among
all partitions. Formally, a step ψ that maps a set of traversers
to another is partitionable if all traversers T can be partitioned
by a function hψ : T → PartId, such that

ψ(T ) =
⊎

p∈PartId

ψ({ti|hψ(ti) = p}),

where
⊎

denotes the disjoint union of traverser sets. Intu-
itively, the partitionable property allows dividing the traversers
into parititions and limiting their interactions within each
partition. For example, the aforementioned Dedup step can be
naturally partitioned by the current partition of the traversers,
i.e., hDedup(t) = H(µ(t)), because the effect of a Dedup
traverser depends only on previous traversers of the same
partition. By leveraging this property, traverser steps can be
executed in parallel without introducing global synchroniza-
tions between different partitions.

Besides Dedup, the Join step useful in optimizing many
complex graph pattern matchings, is another important step
capable of incremental and parallel execution. To illustrate
this, consider the example query in Figure 3. Given a person
p and a tag t, the query requires to find all posts created
by one- or two-hop friends of p with tag t. With the join
operation, we can initiate two traversals concurrently, starting
from both endpoints. Specifically, we may break the path into
two partial paths (denoted PathA and PathB), find these
two patterns independently, and join them at the creator v.
The selection of the join key is facilitated by a cost-based
query planner, which chooses the key that minimizes the
estimated number of all matched partial paths. This join-
centric execution plan typically outperforms approaches that
solely expand from either endpoint of the pattern path, as it
can significantly reduce the size of intermediate data sets.

knows
*1..2p: Person

id = $pid

hasCreatorv: Person

id ≠ $pid

hasTagPost

title

t: Tag

name = $tag

PathA PathB
join key

Fig. 3: An example query pattern where bidirectional join
outperforms unidirectional traversal from either endpoint.

We use the double-pipelined join algorithm [23] to execute
the join step incrementally. Specifically, we maintain the sets
of found PathA and PathB instances at each creator person
(i.e., the join key). Upon finding a PathA instance πA at the
creator person v, the traverser first inserts πA to the PathA
instances at join key v. Then, it probes the hash table of
PathB to obtain the set of PathB instances {πB} with
creator person v. For each instance πB in the set, we can
immediately spawn a new traverser representing an instance
πA ◦ πB of the complete query pattern for further processing.
The workflow for finding a PathB instance is similar. The
Join step is also naturally partitionable on join key; hence,
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the join computation can be carried out in parallel at different
workers for keys in different partitions.

B. Extending the Gremlin Traversal Machine

Based on the above intuition, we have evolved the original
property graph model, which solely represented the data
graph, to include graph partition information and intermedi-
ate execution states. This new model, termed as partitioned
stateful graph model, is a 5-tuple G = (V,E, λ,H,M) that
incorporates two new components:

1) H : V → PartId is the graph partitioning function
described in §II-C.

2) M = {p ∈ PartId |Mp} are temporary key-value stores
assigned to each partition, called memoranda (memos).
The memos are primarily used to record some mutable
states of various traversal steps, which can be read or
written by traversers in the current partition. The memos
distinguish themself from the regular graph data in the
following aspects:

• Every query can only access the memo records
it creates, and each memo record has its lifetime
bound to some specific query. The memo is auto-
matically cleared after the creating query terminates.

• In transactional graph processing systems, the
memo data can be freely read or written by tra-
versers and is not subject to concurrency control.
That is, even a read-only graph transaction can
modify the memo data.

Correspondingly, a graph traversal query can be represented
as a partitioned stateful traversal machine (PSTM) program,
in which a traverser can be formally defined as a 4-tuple
(v, ψ, π, w), where

1) v ∈ V denotes the current position of the traverser.
2) ψ ∈ Ψ denotes the current step of the traverser.
3) π denotes a set of local variables, whose meanings are

interpreted based upon step specifications. For example,
in a projection step, the expression can refer to the
parameters in π.

4) w ∈ R is a new component not present in the original
Gremlin model, called progression weight, which is
pivotal in PSTM to implement efficient progress tracking
and termination detection. Intuitively, it represents the
amount of work the current traverser has to do. The root
traverser has a progression weight of 1. If a traverser
with weight w spawns n (n ≥ 1) new traversers, the
progress weight of each new traverser is w/n; otherwise,
it ends without spawning any new traverser and its
weight w is recorded as finished. This maintains the
invariant that the sum of weights of all active traversers,
including those being transferred over the network, plus
the total finished weights equals 1,∑

t∈T
wt + wfinished = 1.

Hence, when the total of finished weights equals 1, it
indicates that no active traversers remain and the entire
traversal has completed.

The capability of this model can be exemplified through
the k-hop graph traversal in Figure 1. In multi-hop traversals,
many traversers may access the same vertex multiple times via
different paths. Hence, duplicated traversers are often pruned
to avoid the combinatorial explosion. In BSP systems, this
traversal is implemented as k supersteps, each expanding the
current vertex set and removing duplicated vertices, as in
Figure 4b. While asynchronous expansion of the vertex set is
feasible, the requirement of deduplication poses a challenge.

Figure 5 shows the execution plan of the multi-hop traversal
in our model. With PSTM, the system can keep track of the
shortest distance from the starting vertex to each vertex v
in the memo as MH(v)[Distance, v], where Distance is a
user-defined property label distinguishing it from other key-
value pairs in the memo. Thus, a traverser may be pruned if
its traversed distance πd is no less than the known shortest
distance to the current vertex. For instance, in Figure 4c,
traverser B visiting vertex 2 can identify that traverser A has
previously visited this vertex with a distance of 1 from the start
vertex, less than B’s traversed length. As a result, B will not
discover more vertices than A and can be pruned, preventing
redundant data access and computation.

Although traverser deduplication is enabled with memos,
redundant vertex accesses may still occur. For instance, tra-
verser D visits vertex 4 following traverser C. In this case, D
must continue exploring from vertex 4 as it might potentially
discover more vertices than C. This redundancy, however,
has a negligible effect on the overall performance of asyn-
chronous traversal in practice, as traversers with a shorter
history trajectory are generally scheduled to run before those
with a lengthier trajectory. Moreover, with memo-assisted
deduplication, the time complexity of a k-hop graph traversal
is limited to O(k|E|), as each vertex memo will be updated no
more than k times. This effectively prevents the combinatorial
explosion problem.

C. Supporting Aggregation Steps and Subqueries

Aggregation steps, like Sum, Max, and GroupBy, are
commonly used to combine a set of query results. Like
partitionable steps, aggregation operations with commutativity
and associativity can also handled by all partitions in parallel.
Hence, we may store the locally aggregated results in memo.
After the termination of all previous traversers, all local results
can be extracted and combined to obtain the final results.

Unlike other steps that can produce outputs incrementally,
aggregation steps cannot give the final results unless all
previous traversers have terminated. As shown in Figure 6,
in PSTM, we create a subquery for each set of traversers
to aggregate. Each subquery is progress-tracked separately
using the weight-based mechanism. After the termination of a
subquery, the traverser in the parent query resumes execution
with the aggregated results.
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Fig. 6: Execution plan of the aggregation operator with aggre-
gation function f .

IV. THE GRAPHDANCE SYSTEM

Based on the PSTM model, we developed GraphDance, a
distributed in-memory graph database optimized for interac-
tive complex graph queries. From a bird’s-eye perspective, a
GraphDance cluster contains a set of nodes for both graph
storage and query execution. Each node contains a set of
workers managing the graph partitions. GraphDance adopts a
shared-nothing design, where each graph partition is managed
by a dedicated worker and all traversers on that partition
are executed by that worker. Since the traverser can only
access the local data partition and memo, this design helps
promote cache locality, and create an ideal fit for Non-Uniform
Memory Access (NUMA) architectures. As the memo and
graph data of each partition are managed by a single-thread
worker, accessing the local data and memo does not require

expensive inter-thread synchronization primitives like mutexes
and semaphores.

A. Efficient Distributed Progress Tracking
During the execution of the graph traversal, most traversers

only handle small tasks such as accessing one vertex/edge
property. Consequently, it is crucial to keep the amortized
progress tracking overhead minimal to avoid impacting the
query performance. Also, the system shall promptly detect the
end of traversal without introducing excessive latency.

To effectively implement the weight-throwing mechanism
without creating a centralized performance bottleneck, we
adopt the following key optimizations in our system.

a) Weight coalescing: When there are a large number
of traversers terminated, their weights must be actively aggre-
gated to ensure prompt detection of query termination. Using a
centralized progress tracker to collect weights of all terminated
traversers will clearly lead to a performance bottleneck.

We propose weight coalescing to solve this problem. The
finshed weights are first temporarily stored and aggregated in
the local memo. Whenever we flush the local message buffer
as stated in §IV-B, the locally combined weights are also sent
to remote progress tracker. This mechanism ensures prompt
terminatin detection while also largely reduces the number of
messages sent to the progress tracker.

b) Avoiding floating-point arithmetic: When implement-
ing the weight-throwing mechanism with floating-point num-
bers, it suffers from precision and underflow problems. While
this can be solved with arbitrary-precision arithmetic, we use
a simpler yet more efficient method. We represent the weight
as an element of some finite abelian group G. Whenever we
want to spare some weight from w, we choose an element
a ∈ G uniformly and independently at random and split w
into a and w− a. We prove that the algorithm has a bounded
false-positive probability.

Theorem 1. Let n be the number of coalesced weights sent
to the progress tracker. The above algorithm reports a false-
positive termination with a probability of at most (n−1)/|G|.
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Proof. Let wi (1 ≤ i ≤ n) be the total received weight after
the ith receipt, where wn = 1 indicates the termination. The
algorithm reports a false-positive termination whenever wj =
1 for some j < n. For each j < n, 1−wj is the total weight
not yet returned to the tracker, which is the sum of several
independent random variables uniformly distributed on |G|.
Hence, 1 − wj is also uniformly distributed over |G|, which
means P (wj = 1) = 1/|G|. By Boole’s inequality, we have

P

(
n−1⋃
i=1

{wj = 1}

)
≤
n−1∑
i=1

P (wj = 1) =
n− 1

|G|
.

In our implementation, we use 64-bit integers and modular
arithmetic to represent and accumulate the weights. Hence, the
false-positive rate, (n− 1)/264, is negligible in practice.

B. Two-Tier I/O Scheduling

During the execution of a complex graph query with a
asynchronous model, millions of messages may be generated
asynchronously between the worker threads. The massive
amount of small and scrappy I/O operations generated by these
asynchronous messages is the root cause of communication
inefficiency in asynchronous systems.

We use a two-tier message-passing channel for efficient
inter-worker communication. The first tier of the channel
performs thread-level message batching. Each worker thread
contains a message buffer for each node in the cluster. Mes-
sages sent by traversers in this partition are first stashed in the
corresponding buffers. Whenever the content size in a buffer
exceeds a certain limit (8 KB in our experiments), we flush
all the buffered messages to the second tier. Also, if there are
no more traversers ready for execution in the current partition,
we flush all the buffers before the current thread sleeps. The
second tier, managed by separate network threads, combines
the messages from different threads. The message pack is then
sent over a TCP stream to the remote server. As a shortcut,
messages sent to workers on the same node are passed via
shared memory instead of networking.

C. Transactional Processing Support

To support transactional updates to the graph data, we use
the transactional edge log (TEL) [24] to store the multi-
version adjacency lists, which embed the creation and deletion
timesteps to the edge data, allowing to find visible edges
within a single sequential scan. We use MV2PL for concur-
rency control, as read-only queries will not be blocked by
concurrent update transactions under MV2PL. Specifically, a
centralized transaction manager assigns timestamps for update
transactions and maintains the last commit timestamp (LCT),
which means that all transactions before LCT are committed.
When the system restarts after a crash, all workers will scan
the graph data and remove all versions with timestamps larger
than LCT. To reduce the load of the centralized transaction
manager, the LCT is broadcast to all worker nodes; a read-
only query can fetch the LCT from any worker node as its
read timestamp without consulting the transaction manager.

V. PERFORMANCE EVALUATION

To demonstrate the efficiency of GraphDance, we employed
the whole LDBC Social Network Benchmark (LDBC SNB)
[11] and compare GraphDance with state-of-the-art graph
databases in various settings, which simulates a mix of simple
and complex query workloads. We also use the k-hop traversal
query in Figure 1 on representative real-world graph datasets
to study the scalability of GraphDance and the impact of
the optimizations we used in the design of GraphDance. As
all these graphs are unweighted, we assign a random integer
weight to each vertex for aggregation queries. The starting
vertex is randomly selected from all vertices for 100 times
and the average is reported.

TABLE II: Summaries of graph datasets used in evaluation.

Dataset # Vertices # Edges Raw Size
LDBC SNB SF300 969,958,916 6,729,459,600 256 GB

LDBC SNB SF1000 2,930,667,395 20,718,772,476 862 GB
LiveJournal (LJ) [25] 3,997,962 34,681,189 464 MB
Friendster (FS) [25] 65,608,366 1,806,067,135 31 GB

Unless otherwise mentioned, the experiments are conducted
on a cluster of 8 nodes running Ubuntu 20.04 with Linux ker-
nel version 5.4.0. Each node has two Intel Xeon Gold 6240R
processors and 384 GB RAM. All nodes are interconnected
with the 200 Gbps network. We choose the following graph
query engines as baseline systems:

• TigerGraph [26], a prominent commercial distributed
graph database known for its scalability and superior
performance relative to many open-source alternatives in
distributed settings. We use its official LDBC SNB query
implementations for evaluation.

• GraphScope [27], the current top-performing system
in LDBC social network benchmarking with officially
audited results. While GraphScope supports distributed
execution using the Gremlin language, its LDBC queries
are implemented with manually optimized C++ proce-
dures tailored for single-node settings only.

• GAIA [28], a graph analysis engine on distributed graphs
with native Gremlin language support.

• Banyan [29], a distributed graph query engine based on
scoped dataflows. Because the source code of Banyan is
hardcoded for specific queries, we implement Banyan’s
scoped dataflow mechanism on GraphDance’s codebase.

Furthermore, to validate the effectiveness of PSTM model, we
have modified GraphDance for a comparative analysis against
the following alternative data and execution models:

• Non-Partitioned Graph Model: In this scenario, the
graph data and query states are not partitioned and are
shared by all worker threads.

• BSP Execution: Instead of using the traverser model, all
queries are executed using BSP model.

A. LDBC SNB Workload

The LDBC Social Network Benchmark is one of the
most renowned and popular benchmarks for assessing the
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Fig. 7: Average and P99 latency of IC and IS queries using mixed LDBC SNB SF300 Interactive Workload.

performance of graph databases. It comprises a comprehensive
suite of 14 representative Interactive Complex queries (ICs),
designed to rigorously evaluate a graph database system’s abil-
ity and performance in various domains, including traversal,
join operations, filtering, and data aggregation. Additionally,
it incorporates short read and update queries. The detailed
definitions of the benchmark dataset and the associated queries
are available at https://ldbcouncil.org/ldbc snb docs/.

Given the challenges in overcoming communication over-
head and achieving high performance in distributed environ-
ments, it has been observed that all previously audited graph
databases [27], [30], [31] are either limited to single-node
or have had their LDBC SNB implementations exclusively
tailored for single-node setups. Their distributed implemen-
tation, if available, typically exhibit increased latency and
reduced throughput, predominantly due to the poor handling
of communication, scheduling, and data access for distributed
graph traversal executions. Thus, we benchmarked the LDBC
SNB performance of GraphDance against TigerGraph, which
provides distributed LDBC SNB query implementation. We
also compare with GraphScope, which provides the current
best single-node implementation.

1) Mixed LDBC SNB Interactive Workload: We first eval-
uate the performance of GraphDance using the entire mixed
LDBC SNB Interactive Workload against TigerGraph, which
includes a variety of queries: interactive complex queries (IC),
interactive short queries (IS), and transactional updates (UP).
Different from stress testing that executes concurrent queries
as much as possible, in LDBC, each type of query is issued
at a predefined frequency. The frequencies are controlled by
a workload parameter known as the Time Compression Ratio
(TCR). A lower TCR indicates a higher throughput require-
ment for systems to achieve. Moreover, due to significant
timeouts in TigerGraph’s implementation of IC3, IC9, and
IC14, we excluded these queries to enable TigerGraph to
complete the mixed workload tests successfully. The results
of executing these queries will be given in the next section.

Figure 7 compares the latency of all queries between Graph-
Dance and TigerGraph. Notably, TigerGraph fails to complete
the test at a TCR of 0.03 because it is unable to keep up
with the query issuance rate. Across all queries, GraphDance’s
average latency is 88.7% and 91.6% less than TigerGraph
at a TCR of 3 and 0.3, respectively, reflecting its superior

performance as well as its remarkable scalability.
2) Individual Interactive Complex Queries: As reported in

Figure 8, we also test the performance of GraphDance and
TigerGraph on each interactive complex query individually.
Moreover, to evaluate the effectiveness of our partitioned
stateful traversal machine model, we also compare against the
non-partitioned graph model that shares graph storage and
query states across all threads in a node. We measure the
minimum query latency by submitting the queries sequentially,
and the maximum throughput by using up to 256 concurrent
threads to submit queries.

As we can see from the figure, on the LDBC SF300
graph, GraphDance is able to deliver an average of 88.9%
lower latencies in interactive complex queries. Meanwhile,
GraphDance offers 43.3× higher throughput on average. On
the larger LDBC SF1000 graph, GraphDance can still of-
fer 90.3% lower latency and 35.5× higher throughput. This
justifies the high efficiency and better resource utilization of
asynchronous execution models for interactive complex graph
queries, especially under high concurrency.

When compared to a non-partitioned storage, a partitioned
graph model achieves an average reduction of 46.5% in latency
and a 3.29× increase in throughput. This improvement is
primarily attributed to the removal of inter-thread synchro-
nization on the graph storage and query states. In a non-
partitioned system, worker threads must employ latches when
accessing shared data, which can impose substantial overhead
and potentially lead to contention issues. Furthermore, the
PSTM design enhances data locality by ensuring that each
worker thread accesses only the memory of its local NUMA
node and improving the CPU cache hit rate.

3) Comparison against Single-Node System: To delve into
the strengths and weaknesses of single-machine versus dis-
tributed graph query systems, we conducted a comparative
analysis using LDBC SNB graphs and queries. Despite Graph-
Scope’s support for distributed graph storage and execution, its
LDBC SNB implementation is specifically tailored for single-
node deployment. Given that GraphScope currently holds the
highest officially audited LDBC SNB results, we selected it as
the benchmark for single-node LDBC SNB performance and
compared it against GraphDance.

When using the SF300 graph, where the entire dataset can
fit into the memory of a single node, GraphScope exhibited
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Fig. 8: Latency and throughput of individual complex read queries from LDBC SNB SF300 and SF1000.

an average query latency that was 58.1% lower than that
of GraphDance. This advantage is primarily attributed to
its elimination of cross-node communication and scheduling
overhead. Also, GraphScope’s LDBC implementation uses
specialized C++ plugins manually optimized for each query,
which lacks generality. On the other hand, distributed systems
like GraphDance can achieve higher throughput by scaling
across multiple machines. For instance, with eight nodes,
GraphDance provided an average throughput that was 2.16×
higher than that of GraphScope.

For the larger SF1000 graph, GraphScope was unable to
complete 9 out of 14 IC queries within the time limit due
to the graph’s size exceeding the memory capacity, resulting
in frequent memory swapping. This highlights a fundamental
limitation of single-node graph query systems, which are only
efficient when processing small graphs that can fit within the
DRAM of a single node.

B. System Scalability

We also use the example k-hop query described in Figure 1
to study the scalability of GraphDance and compare it against
other distributed graph query systems. We both evaluate the
vertical scalability by changing the number of worker threads
within one node, as well as the horizontal scalability by
varying the number of nodes.

From the results in Figure 9, it is evident that GraphDance
is capable to achieve almost linear speedup for medium-
and large-sized queries. In contrast, dataflow systems such as
Banyan and GAIA show limited scalability. This limitation pri-
marily arises because these systems instantiate each dataflow
operator in every worker thread, leading to a linear increase in
the overhead associated with scheduling and process tracking.

On the other hand, the overhead of the weight-based process
tracking used in GraphDance is independent of the number
of worker threads, enabling it to scale efficiently even with a
large number of threads. Moreover, GAIA executes the final
aggregation step in a centralized worker, inherently limiting
its scalability in both vertical and horizontal cases.

For small numbers of threads, GraphDance might have
higher latency than Banyan on 4-hop queries. This is due to
the slightly higher per-traverser progress tracking overhead of
GraphDance. However, with more worker threads added, the
latency of GraphDance quickly decreases. For longer queries,
e.g., Friendster 4-hops, the BSP model performs best as it can
amortize the scheduling and synchronization costs among a
large number of traversers during each iteration.

C. Performance Breakdown

Finally, we assess the impact of some key optimizations
of GraphDance. All the experiments are running the same
benchmark as §V-B unless otherwise specified.

1) Lightweight Progress Tracking: We evaluate the perfor-
mance impact of lightweight progress tracking by disabling
the weight coalescing (WC) optimization.

The results in Figure 10 indicate that the weight coalescing
optimization can save up to 77.6% query execution time.
By distributing the weight merging computation over the
entire cluster, WC removes the performance bottleneck on the
progress tracking of a massive number of traversers. This can
be confirmed by the number of messages with or without WC
enabled, presented in Figure 11. Without WC, the number of
progress tracking messages is comparable to other message
types. However, unlike other messages, progress tracking
messages must be processed by a centralized worker, creating
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Fig. 9: Scalablity of GraphDance and other graph query systems.
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Fig. 10: Impact of weight coalescing in progress tracking.

a significant performance bottleneck. With WC enabled, the
number of progress tracking messages is reduced by 91.2%
to 99.3%. It’s worth noting that for simpler queries like
LiveJournal 2- and 3-hop, the benefits of weight coalescing
may not outweigh the associated increase in latency, leading
to a higher response time for these particular queries.

2) Two-Tiered I/O Scheduler: To measure the effectiveness
of our two-tiered I/O scheduler design described in §IV-B, we
first evaluate the performance of a baseline implementation
that synchronously sends every message to the underlying
TCP stream. Then, we examine the performance change by
enabling thread-level message combining (TLC). Finally, we
compare them with the full GraphDance implementation by
further enabling node-level message combining (NLC).

As we can see in Figure 12, thread-level combining sig-
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Fig. 11: Number of progress tracking messages and other
messages.

nificantly improves the performance for all test queries. TLC
is particularly effective in large queries (e.g., 15.9× speedup
in Friendster 4-hop), which involves many message passings.
By combining many smaller messages within a thread, we not
only avoid frequent inter-thread synchronizations but also save
many expensive system calls, which amortizes the additional
overhead of massive fine-grained tasks.

On the other hand, node-level combining has a minor
improvement in the overall response time in large queries.
This is because the number of messages combined in NLC is
generally no more than the number of threads in the local node,
significantly smaller than the number of concurrent traversers
within a region. In smaller, latency-bounded queries, NLC
might slightly slow the execution time because NLC will
increase the message-passing latency.

11



2.63 2.72 2.96

LiveJournal 2-hop

4.01 4.17

8.9

LiveJournal 3-hop

6.59 8.02

80.73

LiveJournal 4-hop

4.09 3.74

5.65

Friendster 2-hop

9.91 9.44

108.57

Friendster 3-hop

866 964

15363

Friendster 4-hop

Re
sp

on
se

 T
im

e 
(m

s)

+ TLC & NLC + TLC baseline

Fig. 12: Impact of the two-tiered I/O scheduler.

3) Hardware Impact: We also study the performance im-
pact of modern hardware by experimenting using legacy
hardware configurations with reduced networking bandwidth
and CPU core count.
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Fig. 13: Relative query latency with reduced networking
bandwidth and CPU core count.

As shown in Figure 13, the hardware configuration sig-
nificantly influences the performance of longer 3- and 4-
hop queries, yielding up to a 2.74× performance boost when
using modern hardware. In contrast, for shorter 2-hop queries,
increasing networking bandwidth and CPU core count does not
enhance performance, as these queries are primarily latency-
bound. Additionally, we find that increasing both networking
bandwidth and computational power is crucial for achieving
optimal query latency; either resource can become a potential
bottleneck for longer queries.

VI. RELATED WORK

a) Graph databases and graph queries: With the in-
creasing demand for graph data management in recent years,
graph databases and graph query engines have attracted great
interest in the industry. Neo4j [32] is one of the earliest graph
databases that adopt a native graph storage engine. GraphX
[33] is an analytical graph engine based on Spark. It stores
vertices and edges using resilient distributed datasets (RDD)
and maps graph APIs to dataflow operators. Banyan [29] is
a graph query engine using scoped dataflow, an extension of
timely dataflow [34], to achieve fine-grained task control and
performance isolation. Besides the graph databases discussed
above, ByteGraph [10] and aDFS [35] are also recently

proposed distributed graph databases that are aware of the
different characteristics of different graph workloads.

b) Parallel and distributed query execution: In relational
graph databases, many studies have proposed techniques to
optimize distributed parallel execution by using local compu-
tation at the partition level. For example, Dremel [36] and
Apache Arrow [37] apply local aggregation before global
aggregation, while Spark SQL [38] uses local deduplication
to reduce redundancy. These optimizations, compared to cen-
tralized query execution, alleviate performance bottlenecks
and minimize data transfer. However, existing parallel graph
query engines either convert graph queries to relational queries
[33], [39], or only optimize specific graph operations such
as graph traversal and pattern matching [20], [40], [41]. In
contrast, GraphDance seamlessly integrates advanced opti-
mizations commonly found in relational systems with a native
distributed graph query execution engine.

c) Sync and Async execution in distributed systems:
In distributed and parallel computation, synchronous (Sync)
and asynchronous (Async) execution modes each have unique
strengths and limitations. Given their distinct advantages, some
graph processing systems, such as PowerGraph [19], Trinity
[42], and PowerLyra [18], allow users to select between Sync
and Async execution depending on the workload. PowerSwitch
[8] introduces an adaptive approach, dynamically switching
between modes during different phases of query execution
to optimize performance. Although GraphDance adopts the
Async model for low-latency, complex graph queries, in-
tegrating Sync mode or PowerSwitch’s hybrid approach in
GraphDance could further improve the performance of long-
running queries.

VII. CONCLUSION

This paper introduces PSTM, a stateful asynchronous graph
traversal model that enhances the expressive power of Gremlin
and bridges the gap between the flexibility of the upper-layer
programming model and the architectural preferences of the
lower physical layers, thereby enhancing both CPU and net-
work utilization. Utilizing PSTM, we have developed Graph-
Dance and compared its performance against leading systems
using the LDBC SNB benchmark. The results demonstrate that
GraphDance achieves an average of 89.2% lower latency than
state-of-the-art systems across all interactive complex queries.
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