Cluster Comput (2010) 13: 127-140
DOI 10.1007/s10586-009-0109-8

Service-oriented execution model supporting data sharing

and adaptive query processing

Yongwei Wu - Jia Liu - Gang Chen - Qiming Fang -
Guangwen Yang

Received: 15 May 2009 / Accepted: 15 October 2009 / Published online: 30 October 2009

© Springer Science+Business Media, LLC 2009

Abstract To deal with the environment’s heterogeneity, in-
formation providers usually offer access to their data by pub-
lishing Web services in the domain of pervasive computing.
Therefore, to support applications that need to combine data
from a diverse range of sources, pervasive computing re-
quires a middleware to query multiple Web services. There
exist works that have been investigating on generating opti-
mal query plans. We however in this paper propose a query
execution model, called PQModel, to optimize the process
of query execution over Web Services. In other words, we
attempt to improve query efficiency from the aspect of opti-
mizing the execution processing of query plans.

PQModel is a data-flow execution model. Along with an
adaptive query framework it used, PQModel aims to im-
prove query efficiency and resource utilization by exploiting
data and computation sharing opportunities across queries.
A set of experiments, based on a prototype tool we devel-
oped, were carefully designed to evaluate PQModel by com-
paring it with a model whose query engine evaluates queries
independently. Results show that our model can improve

Y. Wu (X)) - J. Liu - G. Chen - Q. Fang - G. Yang
Department of Computer Science and Technology, Tsinghua
National Laboratory for Information Science and Technology,
Tsinghua University, Beijing 100084, China

e-mail: wuyw @tsinghua.edu.cn

J. Liu

e-mail: liu-jia04 @mails.tsinghua.edu.cn

G. Chen

e-mail: c-g05 @mails.tsinghua.edu.cn

Q. Fang
e-mail: fangqiming @ gmail.com

G. Yang
e-mail: ygw @tsinghua.edu.cn

query efficiency in terms of both response time and network
overhead.

Keywords Web service - Query processing - Data sharing -
Data-flow execution model

1 Introduction

The promise of Web services (WSs) is to enable a distrib-
uted environment, in which any number of applications or
application components can interoperate seamlessly among
organizations in a platform-neutral, language-neutral fash-
ion [10]. Due to the flexibility, extensibility and interop-
erability of Web services, Service-Oriented Architectures
(SOA) are widely adopted for deploying pervasive comput-
ing environments [4, 33], which have the characteristics of
high heterogeneity, high interoperability, and high-mobility,
by modeling the available resources as services and provid-
ing mechanisms such as for service discovery, data manage-
ment, security control etc.

Pervasive computing poses a number of challenges for
data management [11]. One of the important challenges is
the ability to combine data from a diverse range of data
sources. In this paper, we address this challenge by querying
over WSs for the pervasive computing environment adopt-
ing a Service-Oriented Architecture.

Query facilities [5, 9, 24, 25, 30, 31, 34] have been de-
veloped to support service-oriented queries, which enable
users to access multiple WSs in a transparent and integrated
fashion. Meanwhile, techniques on improving efficiency of
service-oriented queries have been studied, which often in-
clude: (a) selecting the best WS from WSs with similar
functionalities but from different service providers [13, 25]:
Quality Of Web Service (QoWS), with parameters such as

@ Springer

mailto:wuyw@tsinghua.edu.cn
mailto:liu-jia04@mails.tsinghua.edu.cn
mailto:c-g05@mails.tsinghua.edu.cn
mailto:fangqiming@gmail.com
mailto:ygw@tsinghua.edu.cn

128

Cluster Comput (2010) 13: 127-140

availability, latency, and fees, is usually considered as a key
feature of distinguishing competing WSs, (b) ordering the
selected WSs to form a best execution plan [9, 25, 30] de-
termined according to the criteria of minimum query exe-
cution time, minimum monetary costs, or minimum mone-
tary costs subjecting to a limit on the query execution time.
These methods focus on generating optimal query plans. In
this paper, we present a processing model PQModel, which
focuses on the execution of query plans instead.

Our PQModel is an execution model that not only sup-
ports data/computation sharing but also facilitates adap-
tive query processing. Exploiting data/computation sharing
could improve query efficiency and reduce resource con-
sumption when overlapping WS requests occur in multi-
ple concurrent queries. As opposed to existing query exe-
cution models (e.g., [30]), which typically evaluate queries
independently by assigning a set of threads for each query,
our PQModel adopts an operator-centric data-flow query
execution model similar to most of data stream process-
ing systems [6, 20]. Each query can be decomposed into
a set of Web Service Processors (WSPs) and join oper-
ators, and the query is processed by routing each tuple
through them. Concurrent queries are able to share WSPs
and join operators during processing. Therefore, Adaptive
data/computation sharing mechanisms can be developed,
when such an operator-centric data flow execution model
is used, to better utilize resources and improve query effi-
ciency.

In terms of facilitating adaptive query processing, our
PQModel utilizes an adaptive framework for Adaptive
Query Processing (AQP) [16], which is an effective ap-
proach to correct bad initial decisions during query execu-
tion. WSPs of PQModel are able to capture running infor-
mation (e.g., WSP rate, service cost and selectivity) of query
execution. The component Event Handler of PQModel is
used for assessing this information and identifying issues.
The components Tuple Encapsulator, Thread Allocator and
WSPs provide interfaces to respond to the related issues.
Thus, different adaptive schemes, which are useful for han-
dling various system changes, can be implemented in PQ-
Model.

The rest of the paper is organized as follows. Section 2
describes preliminaries. Section 3 presents PQModel in-
cluding its architecture and components. The design de-
tails of WSP are discussed in Sect. 4. The experimental re-
sults based on our prototype implementation are reported in
Sect. 5. The related works are discussed in Sect. 6. Section 7
concludes the paper and discusses future work.

@ Springer

2 Preliminaries

In this section, we discuss the preliminaries of our work
from three aspects: web service, service-oriented query, and
query plan.

2.1 Web service

Web services are modeled as function calls in PQModel sim-
ilar to the one described in [30].

Web services are modeled as function calls. Each Web
service WS; provides a function call like interface X; —
Y;: given values of attributes in X;, WS; returns values of
attributes in Y;. Applying the denotation of binding pat-
terns [15], WS; can be modeled as WS; (Xf’, Yif), where the
values of the attributes in X;, must be specified (or bound)
while the values of the attributes in Y; are retrieved (or free).

Moreover, we have to emphasize here, as a prerequisite,
is that all WSs in our context are information providers,
which implies that they operate on backend data sources in
a read-only manner and therefore multiple concurrent WS
requests with equivalent input values are then able to be
merged into a single request.

2.2 Service-oriented query

The definition of query is given as follows:
select Ao from I (A7) < WSy (X2, ¥/) s<- -
ba WS, (X2, Y/) where Pi(A1) A+ A Pu(An)

where A is the set of output attributes, / (Ay) is the schema
of the input table corresponding to the data input of a
client, A; is the set of input attributes, WSy, ..., WS, are
the queried WSs, and Py, ..., P, are the predicates applied
on the attributes Ay, ..., A, respectively.

The following is an example query:

Example 2.1 The following are three WSs:

(1) getSalesPromotion(city”, market’): given the city name,
it returns the markets in the given city holding promo-
tional activities.

2) getAddress(marketb, address?’): given the market, it re-
turns the address of the market.

(3) getPrice(market®, product”, price!): given the market
and the product id, it returns the price of the product in
the given market.

The following query Q attempts to find the addresses
of markets, which are holding promotional activities in the
given city and have the given product on sale with a price
lower than 100.

Q: select address, price from I (city, product)

Cluster Comput (2010) 13: 127-140

129

sa getSalesPromotion(city’, market!)
ba getAddress(market?, address”)
sa getPrice (market®, product®, price)

where price < 100.
2.3 Query plan

A query plan specifies the processing order of WSs in a
query. Figure 1 shows a query plan of Example 2.1. We rep-
resent a query plan as a directed acyclic graph (DAG) that
accepts an input table (e.g., I(city, product)) and produces
answers.

(1) Each edge in the plan implies a producer/consumer re-
lationship between nodes.

(2) Each node in the plan refers to either a WSP or a Join
operator. A Join operator performs join on inputs from
multiple precedent nodes. WSP is a newly defined oper-
ator. A WSP processes WS requests to a specified WS.

Fig.1 An example query plan

WSp

Two implicit operators (selection and projection) are
implemented in the WSP to filter out unnecessary data.

3 PQModel

We introduce our PQModel in this section by describing its
architecture (Sect. 3.1), explaining query process (Sect. 3.2),
and analyzing why PQModel is suitable to process service-
oriented queries (Sect. 3.3).

3.1 Architecture

As shown in Fig. 2, the architecture of PQModel is essen-
tially a dataflow style execution model, which is composed
of a set of WSP instances (e.g., WSP| and WSP;) and Join
instances. PQModel maintains a thread pool, and the threads
in the pool are continuously assigned to work for the WSP
instances or Join instances. Each instance has an input buffer

wSsp

I(city, productq

getPrice
(market”,product”, price)
getSalesPromotlon Result
(cltv market)
WSP
gctAddrcss
(market ,address)

User Plan
Application Allocator
e
Thread
Quer
X : Allocator
Query | Tuple
Query Plan =~ Encapsulator
Optimizer |
Dispatcher
Re-optimization
Trigger

Query Engine with PQModel

S
e

Fig. 2 Architecture of PQModel

@ Springer

130

Cluster Comput (2010) 13: 127-140

for arriving requests (in the form of tuples) and one or more
worker thread for processing requests. The input to PQ-
Model is query plans (generated by optimizing algorithms
as in [30]). Query plans can be broken into a set of tuples
with route information after passing through the Tuple En-
capsulator. The way a query is processed is by routing the
tuples through a pipeline of the instances. For example, in
Fig. 2, Q1 can be processed by routing its tuples through
WSP1, WSP,, WSP3 and Join instance. Q> can be processed
by routing its tuples through WSP4, WSP3; and WSP,,.

Each component of the architecture is described as fol-
lows:

(1) WSP: performs two functions concurrently. (I) Each
WSP instance is in charge of service invocation for
each WS. (II) WSP also collects running information
during execution. Each incoming tuple of WSP in-
stance contains a WS request. For instance, in Exam-
ple 2.1, when a tuple containing “Beijing” arrives at
WSP(getSalesPromotion), it should get the markets in
the city of Beijing that holding promotional activities
by invoking the WS getSalesPromotion. WS requests
are generally can be processed in two modes: single
mode and chunk mode. For single mode, the WS re-
quests are processed one by one. In other word, each WS
call contains only one WS request. For chunk mode, the
WS requests are processed in chunks, that is, each WS
call gets answers for a chunk of WS requests. Chunk
mode is always adopted to make WS calls. As described
in [30], each WS call usually has some fixed overhead,
e.g., parsing SOAP/XML headers. Hence it can be very
expensive to invoke a WS separately for each request.
Sending requests to WSs in chunks (as shown in Fig. 2)
can significantly reduce network overhead. PQModel
uses chunk mode in default. As shown in Fig. 2, a WSP
instance performs the following actions to serve an ar-
riving tuple: WSP gets the WS request contained in the
tuple by parsing its data, retrieves output values by mak-
ing WS call, checks the relevant predicates, writes out-
put data into the tuple’s data, and routes the tuple to its
next destinations. Each WSP can provide services for
one or more queries. As shown in Fig. 2, if two concur-
rent queries (Q1 and Q») contain the same WS (WS3
in Fig. 2), then they can share the same WSP instance
(WSP3). The detailed design of WSP is discussed in
Sect. 4.

(2) Join: is in charge of performing join on its input tuples
and routing its output tuples for further processing.

(3) Plan allocator: prepares all required WSP instances and
Join instances for every arriving query. In different sit-
uations, Plan Allocator performs the following opera-
tions: (I) creating a new WSP instance for a given WS,
(IT) destroying an existing WSP instance, (III) adding a
query to a WSP instance, (IV) removing a query from

@ Springer

Tuple Descriptors

_ID1 | Schema | Path |y,

uery Plan
Query Tuple

Encapsulator
s | ID2 | Schema | Path ~, |
Tuples

(T 1
11

o |

—

Fig. 3 Tuples with route information

a WSP instance, (V) creating a new Join instance, and
(VI) destroying an existing Join instance.

(4) Thread allocator: decides how to allocate the threads in
the thread pool to the WSP instances and join instances.

(5) Tuple encapsulator: is in charge of encapsulating data
items in queries’ input tables into tuples containing
route information. Tuple Encapsulator produces one or
more tuple descriptors and a set of tuples for each ar-
riving query. More than one tuple descriptor, as the
case shown in Fig. 3, can be generated if Query Op-
timizer allows different data items to follow different
plans (e.g., [8]). The tuple descriptor is composed of
three regions: descriptor ID, tuple schema and path. The
tuple schema describes the list of attributes in each tu-
ple; while the path describes the order in which the
query’s tuples are processed by WSP instances and Join
instances. Each tuple also contains three regions: de-
scriptor ID, data and route indicator. The descriptor ID
points to the tuple descriptor containing the path that
the tuple should follow. The data in a tuple is the val-
ues of the attributes, and its route indicator indicates
the progress of the query processing. In our model, the
component Dispatcher and all its operators are able to
route tuples. According to the path specified in the tuple
descriptor and the query processing progress given in
the route indicator of a tuple, Dispatcher can decide the
next destination(s) of the tuple. Thus, every tuple can
be routed individually through WSP instances and Join
instances for processing.

(6) Dispatcher: sends tuples to their first destination for
queries.

(7) Event handler: is responsible of (I) receiving running in-
formation from WSPs, (II) assessing the information to
identify whether there exist opportunities for improve-
ment of plan performance, (III) making adaption deci-
sions, and (IV) notifying other components to respond
to the decisions.

Cluster Comput (2010) 13: 127-140

131

3.2 Query process

PQModel takes two steps to process each query:

Step 1: Prepare query execution. Given an arriving query,
this step prepares all the WSP instances and Join instances
required by the query plan and encapsulates each data item
into a tuple.

Step 2: Perform query execution. In this step, the Dis-
patcher dispatches the tuples prepared in Step 1 to WSPs
for processing. The tuples are then routed through WSP in-
stances and Join instances until the tuples are discarded or
their answers are produced.

3.3 Analysis

In this section, we analyze why our PQModel is suitable to

process service-oriented queries in terms of two goals: (1)

reducing average response time of processing WS requests,

and (2) adaptively allocating resources and changing query

plans and therefore further improving query efficiency.
PQModel achieves the first goal by:

(a) Improve query efficiency by exploiting and reusing
sharable WS requests, as generally the cost of WS re-
quest is expensive.

(b) Improve query efficiency by sharing WS calls. Re-
call that overall network overhead of WS requests can
be reduced while processing WS requests in chunk
mode, where a number of WS requests composing the
same WS call can share the fixed part of overhead on
making WS call. However, in the case of processing
small queries (which means the number of WS requests
needed to be processed is very small), the existing mod-
els (i.e., the models processing queries independently)
could not fully take advantage of data/requests chunk-
ing. As opposed to these models, our PQModel utilizes
operator sharing to combine multiple small chunks from
different queries into a big one and therefore improves
the efficiency of WS processing.

(c) Reduce average response time of WS requests by re-
ducing tuples’ waiting time while processing WS re-
quests in chunks. This is possible because WSP allows
us to combine WS requests from different queries into
a chunk. Hence, the waiting time required to compose a
chunk can be reduced.

PQModel achieves the second goal by using the generic
adaptive framework proposed in [16] (the detailed discus-
sion on adaptive strategies is omitted from this paper due
to space limitation), which has the advantages of compo-
nent reuse, more systematic AQP (adaptive query process-
ing) development, and easy AQP deployment. The frame-
work in [16] decomposes the feedback loop of adaptive
query processing into three distinct phases namely moni-
toring, assessment and response, and uses three associated

AdaptivityComponent {
public:
Queue inputQueue;
private:
AdaptivityComponent[] subscribers;
analyseNotification (Notification) {}
sendNotification (Notification,
subscribers) {}
subscribe () {}

}

Fig. 4 The interface of adaptivity components

components: (1) monitoring component: acts as a source of
notifications on the dynamic behaviour of the ongoing query
execution, (2) assessment component: is to identify whether
there exist opportunities for improvement of plan perfor-
mance, and (3) response component: is responsible for mak-
ing response decisions. Each component supports a pub-
lish/subscribe interface (as shown in Fig. 4) to provide and
ask for services to and from other components, respectively.
As shown in Fig. 4. Public attribute inputQueue is used
for storing notifications from other components. Private
function analyseNotification (Notification)is
used to analyze input notifications. Function sendNoti-
fication (Notification) is used to publish events.
Function subscribe() is used to register with other adap-
tivity components. To adopt the framework, in PQModel,
WSPs is implemented as monitoring component, Event
Handler is implemented as assessment component and re-
sponse component, and the components of Tuple Encapsu-
lator, Thread Allocator and WSPs are able to actuate re-
sponse decision made by Event Handler. By conforming to
the framework, and assembling different existing AQP tech-
niques (e.g., [8, 19]), PQModel has opportunity to (1) imple-
ment adaptive resource allocation for resource utilization or
workload balancing, and (2) implement adaptive plan mod-
ification for higher query efficiency.

4 Web service processor

In this section, we present the design details of WSP by
discussing its architecture and justifying how it facilitates
exploiting data/computation sharing during WS process-
ing (Sect. 4.1), and also its self-monitoring mechanism
(Sect. 4.2).

4.1 WPS architecture

Recall that a WSP instance is used to process WS requests
to a specified WS. As shown in Fig. 5, a WSP consists of
two main components: a Buffer (Sect. 4.1.1) and a WSP Ex-
ecutor (Sect. 4.1.2). The buffer is used to store input and
output tuples and the WSP Executor processes input tuples
by invoking a WS.

@ Springer

132

Cluster Comput (2010) 13: 127-140

Fig. 5 WSP in detail

Buffer
l WSP il"l:::;:]:'s Input Buffer g
S Quut Q |- mmm—> | \
uples =] / 3
npu| | Index > Q@ > |---[HE]E g N I
a | VYT 8
Output i Zz
R = Q | ---[m[mm R N
; Input Output Buffer
D tch |
(- er)n.p.e, OO0O0CEEN
)

To clarify how a WSP works, we first define several no-
tations. WSP(WSi(Xf’ , Yif)) represents the WSP process-
ing requests to WS;. Let ¢ be an arbitrary tuple arriving at
WSP(WSi(Xf’ , Yif)). Vi(t) denotes the data contained in ¢
and X;(#) denotes the schema of V;(¢). Before invoking
WS;, the values in X f.’ must be specified in tuple 7, denot-
ing as VP (r). That is, X? € X;(¢) and V?(#) € V;(t) must
be satisfied. After tuple ¢ is processed by WS;, the data
in Yl.f must be obtained. For any two tuples #; and 7, if
Vl.b (n) = Vib (t2), then both #; and #, can get values for Yif
by a sharing WS request though #; and #, come from differ-
ent queries.

4.1.1 Buffer

As shown in Fig. 5, the buffer is composed of an input buffer,
an index and an output buffer, which are described as fol-
lows respectively.

e Input buffer

The input buffer deposits every input tuple waiting for
service processing. As shown in Fig. 6a, the input buffer
of WSP is implemented by an ArrayList. Every query
is associated with a node of the ArrayList, which points
to an input queue. The queue is implemented as a one-
dimensional array with two pointers. One pointer is called
Head, which points to the first element that can be taken
away from the queue. The other is called 7Tail, which
points to the position that can be used to place the next
incoming element in the queue.

Every arrival input tuple is stored in an input queue.
Each element of the queue is specified as an object called
QueueElement, which represents a WS request shared by
a group of input tuples. As shown in Fig. 6b, a QueueEle-
ment contains three regions: Input, Output, and Sub-
scribers. The input is an instance of X lb . The output is an

instance of Yif . The subscribers refer to the tuples con-
taining the same values in the attributes X f’ .

@ Springer

-

Tail—> Head

Heaa

Hea Tail
Tail »

a) Input Buffer

Input Output Subscribers

516, B

“xiaoming” tiye*nt;

b) QueueElement

Fig. 6 Input buffer

e Index
The index finds the input tuples stored in the input buffer.
It optimizes the speed of identifying the tuples sharing the
same WS request by the means of recording the input of
each QueueFElement and its locations in the input buffer.
When an input tuple ¢ arrives, WSP performs a lookup
to the index for the value of Vib (t) (the WS related input
value in t) to see whether there is a matching WS request
(represented by a QueueElement) that can be reused. If
yes, there must be a request, say QueueElement el, can
be identified by the value returned by the index and then
tuple ¢ should be added into the el’s subscribers. Other-
wise, the following action should be sequentially taken:
(1) a new QueueElement, say e2, with Vib (#) in its input
should be created, (2) tuple ¢ should be added into the
e2’s subscribers, (3) e2 should be inserted into the input
queue, which is allocated to the query that contains tu-
ple ¢, and (4) the value of Vib (t) and the location of the
QueueElement e2 are recorded into the index.

e Output buffer
The output buffer is used to temporarily store the processed

Cluster Comput (2010) 13: 127-140

133

tuples waiting to be dispatched. It is implemented as an
array list. Its every node contains an output tuple and a
pointer to the next node. Every output tuple is dispatched
immediately if its next destination has sufficient space.
Only those waiting for spare space are stored in the out-
put buffer.

To dispatch the tuples in the output buffer, WSP scans
the output buffer periodically. For each tuple ;, if there is
spare space in its next destination, #; is removed from the
output buffer and routed away. Otherwise, tuple ¢; is kept
in the output buffer to wait for spare space.

4.1.2 WSP executor

The WSP executor is a multithreaded executor. Each thread
executes the following four tasks sequentially: (1) process-
ing WS requests in the input buffer, (2) dispatching output
tuples in the output buffer, (3) creating notifications for the
Event Handler, and (4) analyzing the notifications from the
Event Handler.

To process WS requests, each thread in WSP executor
can apply either a single model or a chunk model. For sin-
gle mode, the thread processes requests one by one, while
for chunk mode the thread processes requests in chunks (as-
suming that the chunk size is |S,|).

Let 7; be a thread working in chunk mode. Let ¢; be an
input queue. 7; gets its next WS request from ¢g;. 7; sequen-
tially follows the following steps to perform its tasks: (1)
Thread T; takes requests from the input buffer. If the num-
ber of the requests in ¢;, say |g;|, is larger than or equal to
the chunk size |S.|, T; takes a chunk of requests from g;.
Otherwise (|g;| < |Sc¢|), thread T; first takes all the available
requests from ¢g;, and then takes a number (< |S.| — |gi|)
of available requests from other input queues. (2) 7; ex-
tracts the input of each request and constructs a WS call.
(3) After the WS call is formed, 7; invokes a remote WS
for processing and retrieves answers arrived back. (4) Since
each request is shared by one or more tuples in its corre-
sponding subscribers, 7; writes output data back to each tu-
ple in its subscribers. (5) 7; applies the relevant predicates
specified in the query to each tuple. If any of the predi-
cates is unmatched, the tuple is discarded. (6) 7; forwards
the processed tuples. For each tuple ¢, (a) if its next des-
tination is null (i.e., ¢ is arriving at output point), 7; com-
putes answers for the corresponding data items; (b) if the tu-
ple’s next destination is a WSP, then 7; validates that there
is spare space or similar tuples in the tuple’s next destina-
tion and then 7; dispatches tuple ¢; otherwise (i.e., no spare
space or similar tuple in its next destination), 7; puts ¢ into
the output buffer; (c) If the tuple’s next destination is a Join
instance, T; dispatches ¢ to the Join instance. (7) T; scans the
output buffer to dispatch the tuples in it. (8) 7; creates no-
tifications for the Event Handler by checking the variation

of the running information. (9) 7; analyzes the notifications
from the Event Handler and responds to it.

Thread T7; repeats the nine steps (1)—(9) until it is released
from the WSP executor.

4.1.3 Discussion

As discussed in Sect. 3, one of the methods for PQModel to
improve query efficiency is through operator sharing. This is
ensured by the WSP architecture from the following points:

(1) WSP is able to exploit sharable WS requests. Concur-
rent tuples with equivalent values in WS’s input parame-
ters are grouped together to share the same QueueEle-
ment.

(2) WSP is able to share WS calls. This conclusion is very
direct by the reason that threads in WSP executor are
allowed to get WS requests from multiple input queues
to make WS calls.

(3) WSP is able to reduce tuples’ waiting time for WS
processing while the WSP executor works in chunk
mode. This is also resulted from that WSP executors are
able to group WS requests from different queries to the
same WS calls.

4.2 Self-monitoring mechanism

The other important functionality of WSP is to monitor cost
and selectivity of each WS and the workload of each WSP
instance. Monitoring and collecting this information is cru-
cial for the Event Handler to validate if the query execution
is still efficient.

Many metrics are available to measure the status of a
WSP. We use the following three metrics as examples to il-
lustrate the self-monitoring mechanism:

(1) Service selectivity. It is measured for each query be-
cause each query may contain distinct service-related
predicates. For a service WS;, service selectivity for
query Q is measured as the average number of output
tuples that WS; produces for each input tuple after ap-
plying all its predicates related to WS; in Q. The service
selectivity of query Q; is computed as néut / nin where

out denotes the number of tuples produced for Q; and
ni, is the number of tuples processed for Q;.

(2) Service cost. For a service WS;, its cost is measured as
the average response time of each WS; request. Service
cost may depend on many dynamic factors such as the
network conditions and the WS workload, thus service
cost may change at all times. To estimate the recent cost,
we adopt a window of a certain length and compute the
average response time of WS requests in the window.
The service cost for service WS; in a window w; is com-
puted as fwin/nwin, Where fyin is the total cost of the re-
cent w; WS calls and ny, is the number of WS requests
processed by the recent w; WS calls.

n

@ Springer

134

Cluster Comput (2010) 13: 127-140

(3) WSP rate. It is a metric that reflects the processing
power of a WSP instance. For a service WS;, the rate
of WSP(WS;) is measured as the number of WS; re-
quests that can be consumed in a time unit. It is com-
puted as 7icon/ tspan, Where fspan is the time elapsed since
the number of threads in the WSP executor changed and
Neon 18 the number of tuples processed by the WSP in-
stance since the number of threads in the WSP executor
changed.

After these metrics are obtained, WSPs can use them to
drive adaption. Due to space limitation, we do not discuss
the detailed adaptive techniques in this paper.

5 Evaluation

In this section, we propose our evaluation method and evalu-
ation results. The experiments we performed for the evalua-
tion are based on a prototype system, called SenGine, which
realizes our PQModel and is implemented using Java. The
overall experimental setup is discussed in Sect. 5.1, followed
by the detailed discussion of each experiment and its results
in Sect. 5.2.

5.1 Experimental setup

The experimental setup consists of two parts: the server side
to deploy WSs and the client side to run SenGine. On the
server side, we used Tomcat [2] as the application server
and Axis tools [1] for WS deployment. In our experiments,
each WS ran on an individual machine and provided data by
issuing a SQL query to a Mysql (Version: 4.0.23) database
deployed on a different machine. Several tables were created
in the database, with different data characteristics. We will
detail each table along with each experiment. On the client
side, SenGine ran on a machine with 3 GHz Intel Pentium
4 CPU and 2 GB RAM. To demonstrate the effectiveness
of our model, we compared our model with the one applied
in [30], whose query engine evaluates queries independently
by invoking a set of threads for each query. This model is de-
noted as the independent model in this section. Both the in-
dependent model and our PQModel are multithreaded. They
both communicate with WSs using SOAP.

We compare average response time of queries and net-
work overhead between PQModel and independent model.
Network overhead in this section is measured as the total
number of WS calls rather than communication traffic.

For the same query, the number of tuples generated by
our PQModel and independent model are the same. But the
total number of WS requests generated by our PQModel will
be less than or equal to that of independent model because
of WS requests sharing mechanism. So the number of WS

@ Springer

calls generated by PQModel is also less than that of the in-
dependent model. Though the total number of WS requests
is not linear with the network overhead or communication
traffic. But the less number of WS requests will lead to less
communication traffic definitely. So we use the number of
WS calls replace Network overhead in our evaluation.

5.2 Experimental results

Table 1 shows all query templates used in following experi-
ments.

5.2.1 Effect of sharing WS calls among queries

Initial experiments have been conducted to evaluate the ef-
fectiveness of sharing WS calls among queries, which is en-
abled by operator sharing.

We tested the average query response time and the total
number of WS calls of running a collection of small queries.
In this setting, independent model is hard to take advan-
tage of chunk mode since the number of generated WS re-
quests for each query is small, and our model can still take
advantage of chunk mode since WS requests from differ-
ent queries can share the same WS call. In this experiment,
the queries are submitted to our prototype one by one every
0.5 second. Each query complies with the query template 77
(see Table 1), but uses a different input table with only one
data item in it. This design decision is made based on the
fact that a query set containing queries that follow the same
query template but use different parameters is frequently en-
countered in web applications, where every query is submit-
ted through a web form corresponding to the same query
template.

In T, selectivities of WSy, ..., WS4 are set to 1, which
means they all provide data by accessing a table that returns
exactly one tuple for each input value of the attribute {a}
(Sect. 3.2). Their service costs are 0.12, 0.16, 0.16, and 0.2
respectively. WS calls are processed in chunk mode with
chunk size |S.| = 20. For testing, we varied the number of
queries from 100 to 1000. And in each run, the data items
contained in queries’ input tables are different and therefore
we eliminate the impact of sharing WS requests, which is
another advantage of our PQModel and the experiments on
it will be discussed separately in Sect. 5.2.3.

Figure 7a reports on the average response time of the
queries using two different models. Figure 7b reports on the

Table 1 Query templates used in experiments

Ty :selecta, b, c,d, e from I (a) s WS, (a?, b/) s WS, (a?, ¢/)
b WS3(a?, df) b WS4(a®, ef)

T, :select a, b, ¢ from I (a) < WS (ab, bf) = WSz(bh, cf)

Ts : select a, ¢, d from I (a) < WS;(a®, ¢/) s WS (c?, d /)

Ty : select b, ¢, d from I (b) s WS3(b?, ¢7) b WSs(c?, dT)

Cluster Comput (2010) 13: 127-140

135

Average Response Time of Queries

15000
S—p——— ——
10000
@
E
(0]
£
=
5000
—<— Independent
—— PQModel
F——e——k - - - L
0

0 200 400 600 800
Number of Queries

1000

Total Number of WS calls
4000

3000

2000

Number of WS calls

1000

k7
e/*/nf/’*/>

0 200 400 600 800
Number of Queries

1000

Fig. 7 Processing a collection of small queries complying with the same template

total number of the WS calls incurred by all queries. We can
observe that both the required query response time and the
incurred number of WS calls of PQModel are consistently
and significantly smaller than that of the independent model.
This is because the inter-arrival time (0.5 s) between two
successive queries is not sufficient to fulfill a query for the
independent model, which simply performs four WS calls
(WS, ..., WSy) for each query. However, our PQModel can
group concurrent requests from different queries to the same
WS together and process them in chunks, which can signif-
icantly reduce query response time and the number of in-
curred WS calls, as proved by the experiment.

5.2.2 Average response time in WS processing

In this experiment, we tested the average response time of
queries with large input tables (1000 data items). For test-
ing, we ran two queries Q1 and Q, complying with the
same query template T7. Selectivities of WSy, ..., WSy are
set to 0.8, 0.6, 0.4, and 0.2 respectively. Service costs of
WS1, ..., WS4 are 0.12, 0.16, 0.16, and 0.2 respectively.
WS calls are processed in chunk mode with chunk size
|Se| = 20.

We submitted Q> immediately after Q. Both QO and Q0>
have an input table with 1000 data items, and the data items
contained in queries’ input tables are different. We ran Q
and Q- for ten times. Figure 8 reports the average response
time of Q1 and Q- using two different models for each run.
We can see that the average response time of PQModel is
smaller than that of the independent model.

5.2.3 Effect of sharing WS requests
In this section, a set of experiments conducted to investi-

gate the effectiveness of sharing WS requests are described.
We ran a query Q3 complies with the query template 73 in

Average Response Time of Queries

100
80 G—\g*--a»)% /*‘/
o ¥ °
—~ 60
&
(]
£
= 40
—+— Independent
20 —6&— PQModel
0
0 2 4 6 8 10

Group ID

Fig. 8 Processing two large queries complying with the same template

Table 1. Since the output attribute {b} of WS; is an input
attribute of WS3, thus WS; and WS> must be sequentially
invoked in Q3.

We setup two WSs for 75: WS and WS», which access
the tables Table| (a, b) and Table, (b, c) respectively. We set
2000 tuples in both of the Table|(a, b) and Table, (b, c). For
each tuple #; (1 <i <2000) in Table; (a, b), the value in the
attribute {a} is i, the value in the attribute {b} is randomly
generated from the range 1 to r. For each tuple #; (1 <i <
2000) in Table; (b, ¢), the values in the attributes {b, c} are
both i. We set different values 2000, 40 and 80 to r to adjust
the opportunities for sharing WS, requests. The input tables
of Q3 is I3(a). We varied | [3(a)| from 50 to 1000 for testing.

Figure 9a reports the average response time of the items
in I3(a). We can observe that: (1) PQModel performs much
better than the independent model when r =40 and r = 80.
This is because multiple WS requests may generate equiv-
alent inputs for WS, in which case multiple WS, requests
may share the same WS, request; (2) in PQModel, gener-

@ Springer

136 Cluster Comput (2010) 13: 127-140
Fig. 9 Effect of sharing Average Response Time of ltems Average Number of WS calls
(intra-query) WS requests 300 100
%
250 X 80
A
P4 —
200 : i =
2 %iz g 60
> 150 = - < /%
E § 40
[Qo
100 | —<— Independent £ /
—+— PQModel, r=2000 z /
50 | —S— PQModel, r=40 20
—%—— PQModel, r=80
0 [[[0
0 200 400 600 800 1000 0 200 400 600 800 1000
Number of Items Number of Items
Fig. 10 Effect of sharing Average Response Time of ltems Total Number of WS calls
(inter-query) WS requests 350 % 100 &
300
\% 80
250 P2 2 /
—_ by
0 kA FFa—— o 0 2
s Ry . al
e RS S S
100 —<— Independent L § /
—#—— PQModel, r=2000 20
50 —— —<—— PQModel, r=40 |
—%—— PQModel, r=80
T
0

0 T T
0 200 400 600
Number of ltems

ally, when r is smaller, the average response time of items is
smaller. This is because the number of the opportunities to
share WS, requests is bigger, when 7 is smaller.

Figure 9b shows the total number of the WS calls used
to process 3. We can observe that: (1) the number of the
WS calls caused by PQModel is smaller than that of the in-
dependent model when r =40 and r = 80; (2) in PQModel,
the number of the WS calls is smaller when r is smaller.

This experiment investigated the case of sharing WS re-
quests within a single query. Next, we present the experi-
ment conducted to investigate the case of sharing WS re-
quests across multiple queries. We ran two queries Q4 and
Qs that follow the query template 73 and 74 in Table 1 re-
spectively.

We setup three WSs for T3 and T4: WS, WS, and WS3.
Sharing WS, requests may happen when WS; and WS3 gen-
erate equivalent inputs for WS,. Here, we set WS| and WS3
to access the same table Table(a, b, ¢) in the database. We
set WS, to access a table Table)(c, d) in the database. We
set 2000 tuples in both Table;(a, b, c¢) and Table;(c, d). For
each tuple #; (1 <i <2000) in Table(a, b, c), we set its
value to be (i, i, j), where j is randomly generated from the
range 1 to r. For each tuple ¢; (1 <i <2000) in Table,(c, d),

@ Springer

T
800 1000 0 200 400 600 800 1000
Number of Iltems

we set its value to be (i, i). Similarly, we adjusted the po-
tential sharing opportunities between Q4 and Qs by setting
different values 2000, 40 and 80 to r. The input tables of
Q4 and Qs are |I4(a)| and |I5(b)|. For each value of r, we
varied both of the |I4(a)| and |I5(b)| from 25 to 500. Q5 is
submitted to the system immediately after Q4.

Figure 10a reports the average processing time of the
items in |I4(a)| and |I5(b)|. Figure 10b reports the total
number of the WS calls used to process Q4 and Qs. The
number on the x-axis of these figures denotes the value of
[14(a)| + |I5(D)|. We can see that Figs. 10a and 10b have
similar characteristics as Figs. 9a and 9b. Both response time
and communication cost can benefit from sharing WS calls.
The difference is, in this experiment, multiple requests shar-
ing the same WS, call may contain tuples from both Q4
and Qs.

5.2.4 Effect of adaptive query plan modification

In this section, we present an experiment to investigate the
effectiveness of AQP techniques. For testing, we developed
an AQP technique for correcting sub-optimal query plans in
SenGine. The basic idea is as follows:

Cluster Comput (2010) 13: 127-140

137

Average Response Time of Queries
80
\\

100 .

0
o \)\6
E D
|_
40
—+—— Independent
20 —©— PQModel []

0
0 20% 40% 60% 80%
Progress of Query

100%

Fig. 11 Effect of adaptive query plan

Every time the Event Handler detects a deviation (larger
than a specified threshold) of WS cost, it begins to analyze
if the relevant query plans turn to sub-optimal. For each de-
tected suboptimal plan, Event Handler notifies the Tuple En-
capsulator the decision of query re-optimization. After re-
ceiving the notification, the Tuple Encapsulator triggers the
query optimizer to perform query optimization (the opti-
mization algorithm proposed in [30] is used), generates a
new tuple descriptor containing new route information for
the query, and sets tuples that have not been dispatched or
encapsulated to point to the new tuple descriptor.

In this experiment, we ran a query Qg complies with the
query template 77 in Table 1. Selectivities of WSy, ..., WS4
are all set to 0.5. The input table of Qg contains 1000
data items without duplicate values. The initial service costs
of WSy, ..., WS4 are 0.8, 0.12, 0.16, and 0.2 respectively.
WS calls are processed in chunk mode with chunk size
|S¢| =20. After a certain time (here, we use the progress
of query, denoted by p, representing the percentage of Q¢’s
items that have been dispatched), we changed the cost of
WS to 0.2 by adding a delay to each WS call. For testing,
we varied p from 10% to 100%.

Figure 11 reports the query processing time of Qg of two
models. We can observe that: (1) for both models, the re-
quired query processing time is more while the cost change
of WS happens earlier; (2) PQModel performs much bet-
ter than the independent model while there is a cost change
during query processing (when p < 100%), which means,
adaptive query plans of PQModel exhibit improved effi-
ciency compared to static query plans (the independent
model).

6 Related work

Several streams of research related to our work are discussed
in this section.

6.1 Answering queries over Web services

Query over WSs is first defined as a SQL-like query in
WSMS [30], in which the authors focus on query optimiza-
tion: arranging a query’s WS calls into a pipelined execu-
tion plan to optimally exploit parallelism. PQModel differs
from WSMS in two ways: (1) WSMS executes queries in-
dependently without sharing WSPs; however PQModel al-
lows multiple queries to share WSPs. (2) WSMS uses static
query plans for query processing; but PQModel uses adap-
tive query plans. Therefore, our PQModel performs better
in terms of query efficiency and resources usage. In [31], an
approach for integrating information from multiple bioin-
formatics data sources and services is proposed, where a
data-flow execution model is applied. As opposed to our
PQModel, the approach does not exploit data/computation
sharing and AQP techniques. Instead, it investigates on con-
straints to reduce the access to the WSs. Multi-domain
queries considered in [9] also need to query over two kinds
of WSs: exact services and search services. The work pre-
sented in [9] focuses on query optimization rather than exe-
cution, which is our research point. Besides, we plan to dis-
tinguish between exact services and search services during
query evaluation in the future work.

6.2 Data/computation sharing techniques

Data/computation sharing techniques have been widely
studied in the context of traditional DBMS [18, 28], data
integration systems [12, 26], and data stream systems [20].
Our technique is most closely relevant to QPipe [18]:
a simultaneously pipelined query evaluation paradigm of
RDBMS. QPipe changes the query engine philosophy
from query-centric (one-query, many-operators) to operator-
centric (one-operator, many-queries); thereby it can proac-
tively detect common data and computation at execution
time so that sharing could be possible. This is also what
our PQModel wants to take advantage of; therefore higher
query efficiency and better resource usage can be facili-
tated. QPipe considers RDBMS queries but PQModel con-
siders service-oriented queries. QPipe exploits common data
in relational operators while PQModel exploits sharable
WS requests and calls in WSPs. Other data sharing tech-
niques in RDBMS include: buffer pool management [27],
result caching [12, 29] and multiple-query optimization
(MQO) [26, 28]. Buffer pool management is not suitable
for our context since PQModel uses network-based process-
ing rather than disk-based processing. Result caching, which
actually can be used in our context to cache results of WSs
or queries with high reference frequencies and low mainte-
nance costs, and MQO techniques, which can also be used
in our context to identify reusable WS requests by generat-
ing a global query plan for a batch of queries in the phase of
query optimization, will be considered in the future.

@ Springer

138

Cluster Comput (2010) 13: 127-140

6.3 Adaptive query processing (AQP)

There is a large body of work on AQP techniques [6, 7, 14,
17, 19, 21-23, 32]; [7, 14] are two comprehensive surveys
of the classical AQP techniques. Many proposed AQP tech-
niques can be used in PQModel. First, the join can be real-
ized as MJoin [32], a multi-way stream join algorithm that
can adaptively spill overflowing inputs to disk and later join
them to produce the final output. Second, the approach pro-
posed in [8] can be used in PQModel to generate multiple
query plans for each query, thus different tuples with differ-
ent data properties in the query can be evaluated by differ-
ent query plans. Third, the approach of interleaving planning
and execution (e.g., Tukwila [19]) can be used in PQModel,
thus PQModel can trigger re-optimization while the current
query plan turns to suboptimal. Fourth, operator reconfigu-
ration (e.g., [22, 23]) can be used in PQModel to adapt to
workload imbalance and changes in resource availability.

6.4 Data-flow execution models

A number of data stream systems (e.g., CACQ [20] and Au-
rora [3]) have been developed along with data-flow process-
ing models. CACQ [20] was implemented based on the eddy
query processing framework [6], which enables very fine-
grained adaptivity by routing each tuple adaptively across
operators to process it. Besides, CACQ also provide shar-
ing mechanisms. First, in CACQ, the path that each tuple
takes through the operators is explicitly encoded in the tu-
ple as tuple lineage, which enables sharing of operators be-
tween queries. Second, a predicate indexing operator called
grouped filter is designed in CACQ to share selections.
Third, unary operators called SteMs (State Modules) are
adopted in CACQ to share Joins.

7 Conclusion and future work

Pervasive computing environments adopting a Service-
Oriented Architectures need to query over Web services
to combine data from multiple data sources. Query over
Web services could be expensive. Some works have been
done to improve query efficiency and better utilize resources
by generating optimal query plans. Our PQModel however
takes another way to achieve same objective: optimizing the
process of query execution over Web services (i.e., optimiz-
ing the execution of query plans).

PQModel has two features. First, it is data-flow exe-
cution model. Concurrent queries in PQModel are able to
share WSPs. Data/computation sharing detecting mecha-
nism is designed in WSP for improving query efficiency
and resource utilization. Second, PQModel adopts an adap-
tive framework. WSPs of PQModel are able to monitor run-
ning information during query plan. Event Handler is able

@ Springer

to assess running information and identify events. The com-
ponents of Tuple Encapsulator, Thread Allocator and WSPs
are able to respond to events. Therefore, various AQP strate-
gies can be developed in PQModel to lead to higher query
efficiency. A set of experiments were conducted to evaluate
the effectiveness of sharing and adaptivity. The experiment
results clearly demonstrate that our PQModel can achieve
performance improvement in terms of response time and
network overhead.

In the near future, we plan to introduce and develop vari-
ous AQP techniques based on the adaptive framework of our
model.

Acknowledgements This work is supported by ChinaGrid project
of Ministry of Education of China, Natural Science Foundation of
China (60573110, 90612016, 60673152), National Key Basic Re-
search Project of China (2004CB318000, 2003CB317007), National
High Technology Development Program of China (2006AA01A108,
2006AA01A111, 2006AA01A101, 2004CB318000,), EU IST pro-
gramme and Asia Link programme.

References

Apache axis. http://ws.apache.org/axis/

. Apache Tomcat. http://tomcat.apache.org/

3. Abadi, D., Carney, D., Cetintemel, U., Cherniack, M., Convey,
C., Lee, S., Stonebraker, M., Tatbul, N., Zdonik, S.: Aurora: a new
model and architecture for data stream management. Int. J. VLDB
12(2), 120-139 (2003)

4. Acharya, S.: Application and infrastructure challenges in perva-
sive computing. In: NSF Workshop on Context-Aware Mobile
Database Management (CAMM), January, 2002

5. Altinel, M., Brown, P., Cline, S., Kartha, R., Louie, E., Markl,
V., Mau, L., Ng, Y.H., Simmen, D., Singh, A.: Damia—A data
mashup fabric for intranet applications. In: Proc. of the 33rd Int.
Conf. on Very Large Data Bases (VLDB) (2007)

6. Avnur, R., Hellerstein, J.: Eddies: Continuously adaptive query
processing. In: Proc. of the 19th ACM SIGMOD Int. Conf. Man-
agement of Data (2000)

7. Babu, S., Bizarro, P.: Adaptive query processing in the looking
glass. In: Conf. on Innovative Data Systems Research (CIDR)
(2005)

8. Bizarro, P., Babu, S., DeWitt, D., Widom, J.: Content-based rout-
ing: Different plans for different data. In: Proc. of the 31st Int.
Conf. on Very Large Data Bases (VLDB) (2005)

9. Braga, D., Ceri, S., Daniel, F., Martinenghi, D.: Optimization of
multi-domain queries on the Web. In: Proc. of the 34th Int. Conf.
on Very Large Data Bases (VLDB) (2008)

10. Chappell, D.A., Jewell, T.: Java Web Services. O’Reilly, 2002

11. Cherniack, M., Franklin, M.J., Zdonik, S.B.: Data management
for pervasive computing. In: Proc. of the 27th Int. Conf. on Very
Large Data Bases (VLDB) (2001)

12. Chidlovskii, B., Borghoff, U.M.: Semantic caching of Web
queries. Int. J. VLDB 9(1), 2-17 (2000)

13. Conti, M., Kumar, M., Das, S.K., Shirazi, B.A.: Quality of service
issues in Internet Web services. IEEE Trans. Comput. 51(6), 593—
594 (2002)

14. Deshpande, A., Ives, Z.G., Raman, V.: Adaptive query processing.
Found. Trends Databases 1(1), 1-140 (2007)

15. Florescu, D., Levy, A., Manolescu, 1., Suciu, D.: Query optimiza-

tion in the presence of limited access patterns. In: Proc. of the 18th

ACM SIGMOD Int. Conf. Management of Data (1999)

D=

http://ws.apache.org/axis/
http://tomcat.apache.org/

Cluster Comput (2010) 13: 127-140

139

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

Gounaris, A.: Resource aware query processing on the grid.
PhD thesis, School of Computer Science of the University of
Manchester (2005)

Haas, PJ., Hellerstein, J.M.: Ripple joins for online aggregation.
In: Proc. of the 18th ACM SIGMOD Int. Conf. Management of
Data (1999)

Harizopoulos, S., Shkapenyuk, V., Ailamaki, A.: : Qpipe: a simul-
taneously pipelined relational query engine. In: Proc. of the 24th
ACM SIGMOD Int. Conf. Management of Data (2005)

Ives, Z.: Efficient query processing for data integration. PhD the-
sis, University of Washington (2002)

Madden, S.R., Shah, M.A., Hellerstein, J.M., Raman, V.: Contin-
uously adaptive continuous queries over streams. In: Proc. of the
21st ACM SIGMOD Int. Conf. Management of Data (2002)
Markl, V., Raman, V., Simmen, D., Lohman, G., Pirahesh, H.:
Robust query processing through progressive optimization. In:
Proc. of the 23rd ACM SIGMOD Int. Conf. Management of Data
(2004)

Pang, H., Carey, M.J., Livny, M.: Partially preemptive hash joins.
In: Proc. of the 12th ACM SIGMOD Int. Conf. Management of
Data (1993)

Pang, H., Carey, M.J., Livny, M.: Memory-adaptive external sort-
ing. In: Proc. of the 19th Int. Conf. on Very Large Data Bases
(VLDB) (1993)

Petropoulos, M., Deutsch, A., Papakonstantinou, Y.: Interactive
query formulation over Web service-accessed sources. In: Proc. of
the 25th ACM SIGMOD Int. Conf. Management of Data (2006)
Quzzani, M.: Efficient delivery of Web services. PhD thesis, Vir-
ginia Polytechnic (2004)

Rubao, L., Minghong, Z., Huaming, L.: Request Window: An
approach to improve throughput of RDBMS-based data integra-
tion system by utilizing data sharing across concurrent distributed
queries. In: Proc. of the 33rd Int. Conf. on Very Large Data Bases
(VLDB) (2007)

Sacco, G.M., Schkolnick, M.: Buffer management in relational
database systems. ACM TODS 11(4), 473-498 (1986)

Sellis, T.K.: Multiple query optimization. ACM Trans. Database
Syst. 13(1), 23-52 (1988)

Sivasubramanian, S., Pierre, G., Steen, M.V., Alonso, G.: Analysis
of caching and replication strategies for Web applications. IEEE
Internet Comput. 11(1), 60-66 (2007)

Srivastava, U., Munagala, K., Widom, J., Motwani, R.: Query op-
timization over Web services. In: Proc. of the 32nd Int. Conf. on
Very Large Data Bases (VLDB) (2006)

Thakkar, S., Ambite, J.L., Knoblock, C.A.: Composing, optimiz-
ing, and executing plans for bioinformatics web services. Int. J.
VLDB 14(3), 330-353 (2005)

Viglas, S., Naughton, J.F., Burger, J.: Maximizing the output rate
of multi-join queries over streaming information sources. In: Proc.
of the 29th Int. Conf. on Very Large Data Bases (VLDB) (2003)
Weiser, M.: The computer for the twenty-first century. Sci. Am.
265(3), 94-104 (1991)

Yu, Q., Bouguettaya, A.: Framework for Web service query al-
gebra and optimization. ACM Trans. Web (TWEB) 2(1), 1-35
(2008)

Yongwei Wu received his Ph.D. de-
gree in the Applied Mathematics
from the Chinese Academy of Sci-
ences in 2002. Since then, he has
worked at the Department of Com-
puter Science and Technology, Ts-
inghua University, as research As-
sistant Professor from 2002 to 2005,
and Associate Professor since 2005.
His research interests include grid
and cloud computing, distributed
processing, and parallel computing.

Jia Liu is a Ph.D. student in Com-
puter Science and Technology De-
partment, Tsinghua University. Her
research interests include data grid,
distributed data management, het-
erogeneous data integration and data
mining.

Gang Chen is a Ph.D. student of
Department of Computer Science
and Technology, Tsinghua Univer-
sity. His research interest mainly fo-
cus on distributed and parallel com-
puting system.

Qiming Fang is a Ph.D. student at
Department of Computer Science
and Technology, Tsinghua Univer-
sity, Beijing, China. His research in-
terests include semantic web and on-
tology engineering, distributed com-
puting and information retrieval.

@ Springer

140

Cluster Comput (2010) 13: 127-140

@ Springer

Guangwen Yang is Professor of
Computer Science and Technology,
Tsinghua University, China. He is
also an expert on “high-performance
computer and its core software”, the
National “863” Program of China.
He is mainly engaged in the research
of grid computing, parallel and dis-
tributed processing and algorithm
design and analysis.

	Service-oriented execution model supporting data sharing and adaptive query processing
	Abstract
	Introduction
	Preliminaries
	Web service
	Service-oriented query
	Query plan

	PQModel
	Architecture
	Query process
	Analysis

	Web service processor
	WPS architecture
	Buffer
	WSP executor
	Discussion

	Self-monitoring mechanism

	Evaluation
	Experimental setup
	Experimental results
	Effect of sharing WS calls among queries
	Average response time in WS processing
	Effect of sharing WS requests
	Effect of adaptive query plan modification

	Related work
	Answering queries over Web services
	Data/computation sharing techniques
	Adaptive query processing (AQP)
	Data-flow execution models

	Conclusion and future work
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

