
Skyloft: A General High-Efficient Scheduling Framework
in User Space

Yuekai Jia†∗, Kaifu Tian†∗, Yuyang You†, Yu Chen‡†, Kang Chen†
†Tsinghua University, Beijing, China

‡Quan Cheng Laboratory, Jinan, China

Abstract
Skyloft is a general and highly efficient user-space schedul-
ing framework. It leverages user-mode interrupt to deliver
and process hardware timers directly in user space. This
capability enables Skyloft to achieve µs-scale preemption.
Skyloft offers a set of scheduling interfaces that supports dif-
ferent scheduling policies, including both preemptive and non-
preemptive ones. Operating as a user-space scheduling frame-
work, Skyloft is compatible with Linux and integrates seam-
lessly with high-performance I/O frameworks like DPDK.

Evaluation results show that optimizations in per-CPU
scheduling with user-space timer interrupts allow Skyloft’s
Completely Fair Scheduler (CFS) and Round Robin (RR) to
significantly reduce wake-up latency compared to their Linux
counterparts (100µs vs. 10000µs). In comparison to the gen-
eral scheduling framework ghOSt, Skyloft achieves a 1.2×
increase in maximum throughput for Latency Critical (LC)
applications. Additionally, unlike the specialized scheduling
framework Shinjuku, Skyloft not only supports LC appli-
cations but also efficiently allocates CPU resources to Best
Effort (BE) applications under low load conditions. By incor-
porating a 5µs preemption mechanism into the Work-Stealing
strategy, a RocksDB Server running on Skyloft exhibits a per-
formance improvement of 1.9× compared to Shenango.

CCS Concepts: • Software and its engineering → Schedul-
ing.

Keywords: Operating systems, Scheduling, User interrupts

ACM Reference Format:
Yuekai Jia, Kaifu Tian, Yuyang You, Yu Chen, and Kang Chen.
2024. Skyloft: A General High-Efficient Scheduling Framework
in User Space. In ACM SIGOPS 30th Symposium on Operating
Systems Principles (SOSP ’24), November 4–6, 2024, Austin, TX,
USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/
3694715.3695973

*Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s).
SOSP ’24, November 4–6, 2024, Austin, TX, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1251-7/24/11
https://doi.org/10.1145/3694715.3695973

1 Introduction
Cloud computing increasingly demands highly optimized
and customized scheduling policies to enhance performance
across key metrics such as tail latency, throughput, and re-
source utilization [21, 30, 45]. For distributed services within
an application, improved scheduling is crucial for reducing
tail latency, as demonstrated in large-scale RPC systems at
Google [51]. Additionally, for varying workloads, application-
specific scheduling is essential to meet service level objectives
(SLOs) [16, 28, 30, 47].

Efforts have been made to customize Linux schedulers
using user agents [26], live updates [37], and the Berkeley
Packet Filter (BPF) [25], among others. However, scheduling
threads through the kernel introduces performance overhead
due to frequent mode switches and reduced locality [53].
Developing scheduling policies within the kernel is either
constrained by limited interfaces [25] or requires significant
modifications to the kernel’s scheduling subsystem [26]. Ad-
ditionally, kernel-level scheduling cannot take full advantage
of widely deployed kernel-bypass drivers and frameworks,
such as DPDK and SPDK [12, 18].

Recent works manage threads in user space and make
scheduling decisions without kernel intervention for perfor-
mance [32, 35, 52]. However, none of these approaches are
sufficiently flexible to support both µs-scale preemption and
multiple applications to offer the same level of versatility in
scheduling policies as their kernel-based counterparts.

µs-scale preemption is crucial for meeting today’s strin-
gent µs-scale tail latency SLOs. In datacenter applications,
the First Come, First Served (FCFS) policy is widely used and
performs well for workloads with light-tailed distributions
(e.g., Meta’s USR workload [3] in Memcached). However, it
suffers from head-of-line blocking for workloads with heavy-
tailed distributions [16, 28, 30]. For instance, RocksDB can
process GET requests within 10 microseconds, but range
queries may take hundreds of microseconds or even millisec-
onds to complete. Consequently, schedulers must support
preemptive scheduling to implement a Processor Sharing (PS)
policy for heavy-tailed workloads [59]. User-space schedulers
like ZygOS [48] and Shenango [45] lack support for preemp-
tion within a single application. Other user-space schedulers
[8, 52] rely on Linux signals for preemption, which introduces
extra overheads.

Supporting multiple applications is essential for improving
CPU efficiency. Schedulers must dynamically allocate unused

1

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3694715.3695973
https://doi.org/10.1145/3694715.3695973
https://doi.org/10.1145/3694715.3695973

cores from latency-critical (LC) applications to best-effort
(BE) applications and swiftly reallocate cores back to LC
applications to handle burst loads. Shinjuku [30] and Con-
cord [28] implement µs-scale preemptive scheduling through
posted interrupts using virtual machines and compiler instru-
mentation, optimizing both tail latency and throughput for
workloads with light- and heavy-tailed distributions. How-
ever, these systems do not support core sharing with other
applications to enhance CPU efficiency at low loads, as they
dedicate cores exclusively to a single application.

To enable universal user-space scheduling that supports
both µs-scale preemption and multiple applications, we pro-
pose Skyloft, a general user-space scheduling framework de-
signed to achieve the following goals.

High Flexibility. Skyloft provides flexible support for var-
ious scheduling policies across multiple applications. It ac-
commodates both preemptive and non-preemptive schedul-
ing policies, allowing efficient management of threads both
among applications and within individual applications.

High Efficiency. Skyloft supports µs-scale preemption,
enabling it to efficiently implement preemption-based sched-
uling policies. To achieve this, Skyloft needs to support light-
weight context switching, efficient interrupt management, fast
resource allocation and synchronization primitives for effec-
tive management of user-level threads.

High Compatibility. Skyloft is fully compatible with
kernel-bypass I/O frameworks, such as DPDK, allowing
high-performance I/O operations. Furthermore, Skyloft
seamlessly coexists with Linux, offering flexibility in
deployment. Applications have the freedom to choose
between utilizing Linux’s native schedulers or leveraging
Skyloft’s custom scheduling mechanisms, based on their
specific performance or operational requirements.

Achieving µs-scale preemption and efficient multi-
application switching is challenging. Both are closely tied to
privileged operations typically restricted by the kernel, such
as interrupt handling and page table management.

For µs-scale preemption, Skyloft leverages a new hard-
ware feature, User Interrupts (UINTR), introduced in Intel
Sapphire Rapids processors [13]. This feature enables user-
space programs to register, deliver, and handle interrupts with
minimal configuration overhead from initialization by the
kernel. Both user-level threads and hardware components can
act as interrupt senders. Skyloft supports both centralized
preemptive scheduling and per-CPU preemptive scheduling,
closely resembling the native Linux schedulers. By utilizing
the per-CPU hardware timer design (x86 LAPIC), Skyloft
handles timer interrupts in user space, offering improved
scalability compared to dispatchers or timers simulated via
Inter-Processor Interrupts (IPI).

To support multiple applications, Skyloft avoids reliance
on a global controller for making decisions. Instead, it utilizes
a main loop on each core, benefiting from a clean interface
between the user and kernel for efficient application switching.

Skyloft provides a set of scheduling operations to facilitate the
implementation of various scheduling policies. A scheduler
can leverage these operations, such as task_enqueue and
task_dequeue, to define custom policies.

To evaluate Skyloft, we implement several per-CPU
scheduling policies and achieve wakeup latencies that are
orders of magnitude lower on schbench [39] compared
to native Linux schedulers (§5.1). We also implement a
centralized policy and evaluate Skyloft using synthetic work-
loads, demonstrating that Skyloft can achieve 1.2× higher
maximum throughput than ghOSt [26], while maintaining
a comparable core share for batch applications (§5.2). For
real-world applications, we implement a work-stealing policy,
where Skyloft delivers performance similar to Shenango on
Memcached. After enabling preemption for the work-stealing
policy, Skyloft achieves 1.2× higher performance than
Shenango on a RocksDB server, while maintaining identical
tail-latency SLOs (§5.3). Finally, we show that Skyloft’s
preemption overhead is 0.6µs from sending an interrupt on
one core to handling the interrupt on another core, and 0.3µs
to handle a timer interrupt, nearly 10x faster than a soft timer
(§5.4).

The main contributions of this paper are:
• Skyloft supports kernel-bypass preemption by leverag-

ing a new hardware feature (UINTR). To the best of
our knowledge, Skyloft is the first general user-space
framework to support µs-scale preemptive scheduling
for multiple applications.

• Skyloft proposes a paradigm to develop various sched-
ulers with a set of general operations. Based on Skyloft,
scheduling policies – previously requiring significant
modifications to specialized schedulers – can be imple-
mented in just hundreds of lines of code.

• Skyloft achieves comparable or even better perfor-
mance than existing works on both synthetic and
real-world workloads for popular applications.

2 Motivation
2.1 User-Space Scheduling Frameworks
The user-space scheduling frameworks [5, 21, 26, 30, 45,
48, 49] are proposed to achieve both flexibility and perfor-
mance, as with other modern kernel-bypass frameworks [12,
18, 29, 33, 47, 60]. Based on the generality, user-space sched-
uling frameworks can be classified based on two dimensions:
whether or not a scheduling framework can support (1) µs-
scale preemption; or (2) multiple applications.

Microsecond-scale preemptive scheduling. Non-preemptive
scheduling policies are usually used in user space. For exam-
ple, with the run-to-completion policy, a task never switches
to another task throughout its lifetime. The cooperative policy
allows switching to another task during execution, but the
switch is invoked by the task itself at a deterministic switch
point (e.g., yield or await). For short-lived RPC requests (such

2

Signal handler &
reschedule ➋

0.6 μs

0.8 μs
3.2 μs

0.7 μs
2.6 μs

IPI handler &
reschedule ➊

sys_kill
User

Kernel

User

Kernel

Kernel IPI
Sender

Kernel IPI
Receiver

UINTR handler &
reschedule

0.08 μs

0.3 μs

SENDUIPI
User

User

User IPI
Sender

User IPI
Receiver 0.6 μs

Figure 1. Comparsion between different preemptive sched-
uling frameworks. ➊ ghOSt [26] modifies kernel scheduler
to reschedule threads on receiving kernel IPIs. ➋ Shenango
[45] further delivers a signal to the thread to yield the core.

as GET/SET requests in key-value stores like in Memcached),
a run-to-completion policy is often used to avoid the over-
head of switching, while also contributing to improved data
locality [5]. However, non-preemptive scheduling leads to
higher tail latency under heavy-tailed workloads [30]. We
need µs-scale preemption to approximate processor sharing
(PS) policy, which performs best in terms of tail latency for
such workloads [59].

Multiple applications. Today’s large-scale datacenters need
to support multiple applications with different characteristics,
such as latency-sensitive applications and batch-processing
applications requiring high throughput. To improve CPU effi-
ciency, schedulers need to allocate unused cores from latency-
sensitive applications to batch processing applications. More-
over, a scheduler is also required to reallocate cores back to
latency-sensitive applications to handle peak load quickly.
Linux can only achieve microsecond latency with low CPU
utilization [34]. Alternatively, Shenango [45] and Caladan
[21] support fast core allocations between multiple appli-
cations. Thus a flexible scheduling framework should also
support multiple applications for efficient resource utilization.

2.2 Challenges in User-Space Scheduling
Scheduling is a core function of an operating system, re-
lying on privileged operations such as handling interrupts
and switching CPU states. It is challenging for user-space
scheduling frameworks to support both µs-scale preemption
and multiple applications with no serious negative impact on
performance.

Microsecond-scale preemption support. Preemption re-
quires the ability to interrupt and subsequently resume task
execution at any point. As shown in Figure 1, preemption via

Scheduling
unit

µs-scale
preemption

Multiple
applications

IX[5], ZygOS[48] uthread ✘ ✘
Shinjuku [30] uthread ✔ ✘
Shenango [45] uthread ✘ ✔

ghOSt [26] kthread ✔ ✔

Skyloft uthread ✔ ✔

Table 1. Comparison of different schedulers. Scheduling unit
denotes the minimum scheduling unit (uthread for user-level
thread, while kthread for Linux task_struct).

kernel IPI (Inter-Processor Interrupt) has been widely used
in existing work. In ghOSt, the agent sends messages to the
kernel, and the kernel sends an IPI to preempt other cores,
which introduces additional context-switching overhead. For
user-space scheduling frameworks, such as Shenango, Linux
signals are used to send preemption signals. This mechanism,
in addition to kernel IPI handling, requires the signal to be
handled in user space through a signal handler, introducing
even more context-switching overhead. Additionally, signal
handling faces scalability challenges when multiple threads
on different cores receive signals simultaneously, leading to
increased processing times due to data races [52].

Multi-application support. To enable scheduling threads
from different applications, the first challenge is to address
the context-switching issue for different applications. From
the kernel’s perspective, different applications are separate
processes with their own address spaces. Switching to a
thread in another application requires switching the address
space. Kernel-space schedulers can easily handle address
space switching, but these privileged operations are difficult
to perform in user space. Additionally, the scheduler needs to
have a global view of all threads (belonging to different appli-
cations), such as priorities, time slices, etc., in order to make
the appropriate scheduling. Therefore, user-space schedulers
need data sharing to get the global view of all threads.

2.3 Limitations of Existing Work
Currently, a series of works have been dedicated to enabling
applications to customize their scheduling strategies, includ-
ing both user-space and kernel-space schedulers. Table 1 sum-
marizes their comparisons with Skyloft.

User-level threading. The M:N threading model, supported
by some runtime libraries [6, 32, 44, 58] and programming
languages with asynchronous capabilities, like Go [22] and
Rust [50], maps M user-level threads to N kernel-level threads.
User-level threads are lighter and can handle many thread op-
erations without needing the kernel, which reduces the over-
head associated with thread creation, context switching, and
synchronization. Despite these advantages, user-level threads

3

struggle with low-overhead preemption and inter-application
scheduling. Consequently, they are limited to functioning
within a single application and cannot efficiently manage
tasks across multiple applications. Moreover, because the ker-
nel scheduler does not recognize user-space scheduling, it
might inadvertently suspend a user-level thread that is holding
a lock, potentially causing indefinite spinning [10, 55].

Dataplane OSes. Several works have integrated scheduling
frameworks with kernel-bypass technologies like DPDK [18]
to develop dataplane operating systems such as IX [5] and
ZygOS [48]. These systems, however, primarily focus on exe-
cuting tasks to completion and lack support for preemption.
Shinjuku [30] and Concord [28] utilize posted interrupts and
compiler instrumentation techniques, respectively, to facilitate
µs-scale preemption. LibPreemptible [35] makes use of user
interrupts. These strategies tightly integrate schedulers with
application logic, which complicates adaptation to various
scheduling policies and multiple applications. Moreover, all
these methods restrict dedicated cores to a single application,
leading to inefficient use of resources.

Core reallocation across applications. Several studies fo-
cus on achieving performance isolation between applica-
tions [21, 27, 40, 45, 49], aiming to meet the tail latency re-
quirements of LC applications while optimizing the through-
put of BE applications. These approaches typically moni-
tor application congestion using various metrics periodically,
making decisions to add or remove cores for each application
and conducting intra-application load balance. For instance,
Arachne [49] redistributes resources every 50ms, whereas
Shenango [45] and Caladan [21] do so at frequencies as low
as 5µs. However, the flexibility of these systems is limited by
their tightly integrated schedulers. Additionally, these frame-
works rely on either Linux signals or kernel IPIs for preemp-
tion, which are not optimal.

User-space delegation of kernel scheduling. Some studies
utilize the Linux scheduling subsystem and delegate sched-
uling decisions to user space. ghOSt [26] facilitates this by
informing user agents about changes in the state of kernel
threads. However, this approach requires frequent interac-
tions with the kernel, leading to considerable overhead. The
recent sched_ext patch [25] in Linux enables control over
kernel schedulers through BPF [20]. BPF programs are lim-
ited in their expressive capabilities due to security constraints,
such as prohibitions on loops and floating-point arithmetic,
which complicates the implementation of complex schedul-
ing strategies. These methods depend on kernel-level threads,
requiring user-to-kernel mode switches for thread creation
and synchronization, which degrades performance.

2.4 Design Goals
Skyloft aims to propose a general scheduling framework to
achieve both flexibility and performance. We consider the
following requirements as goals for Skyloft:

CPU CPU CPU CPU

Timer
Interrupts

(a) Per-CPU scheduling

CPU CPU CPU CPU

IPIs

(b) Centralized scheduling

Figure 2. Two typical scheduling models.

High Flexibility. Skyloft should offer a range of general
scheduling operation interfaces to help the implementation of
various scheduling policies, such as per-CPU/centralized, or
cooperative/preemptive. Additionally, Skyloft should not be
limited to scheduling threads within a single application but
also support thread scheduling across multiple applications.
For instance, when all threads in one application are blocked,
the corresponding cores should be allocated to other applica-
tions to enhance CPU utilization. This necessitates that the
Skyloft scheduler maintains a global view of all applications
to make informed scheduling decisions.

High Efficiency. Skyloft must support µs-scale preemption
with minimal overhead for latency-critical applications. Pre-
emption can be facilitated by CPU-local timer interrupts (Fig-
ure 2a) or through a dedicated dispatcher core that sends IPIs
to other cores (Figure 2b). Skyloft should limit interactions
with the kernel and implement most of its functionality in
user space to decrease the overhead associated with context
switching. For instance, employing user-level threads can
minimize thread operation overhead, and handling interrupts
in user space can reduce preemption overhead.

High Compatibility. Skyloft should require minimal modi-
fications to the kernel to ensure compatibility with existing
Linux systems. It should offer POSIX-compatible threading
APIs, giving applications the flexibility to choose between us-
ing Skyloft or native Linux schedulers. Additionally, Skyloft
should be compatible with user-space I/O frameworks, such
as DPDK [18], for performance.

3 Design
3.1 Design Overview
Skyloft operates on top of Linux to ensure compatibility. To
avoid interference from the kernel in Skyloft’s scheduling,
specific cores are isolated at boot time, exclusively dedicated
to running applications within Skyloft. The remaining cores
continue to function under the Linux scheduler for handling
regular system applications.

Skyloft consists of two primary components (Figure 3): the
Skyloft Library OS, which operates in user space, enabling
kernel-bypass scheduling while offering POSIX-compatible
APIs; and the Skyloft Kernel Module, which runs in kernel
space, managing thread switching between applications and
performing other privileged operations.

The core function of the Skyloft LibOS is to manage user
threads, which are the fundamental units of scheduling. ➊

4

Skyloft LibOS

Skyloft Kernel
Module

Uthread
scheduling ➊

Scheduling
Policy

task_enqueue()
task_dequeue()
task_block()
task_wakeup()
......

UINTR
handler

App 1

App 2

➍

➎
I/O stack

I/O device

Timer source

Shared runqueues

Kernel space
User spacekthread switch ➌

uthread switch ➋

CPU CPU

Figure 3. Skyloft architecture.

The user-space scheduler maintains a shared runqueue across
all applications, follows various user-defined policies, and
makes scheduling decisions accordingly. When a context
switch is required, it either ➋ switches the user thread directly
in user space or ➌ invokes the kernel module to switch the
corresponding kernel thread , depending on the applications
involved (§3.3). ➍ Additionally, the user-space scheduler
handles user interrupts to enable µs-scale preemption (§3.2).
➎ Moreover, the Skyloft LibOS integrates kernel-bypass I/O
stacks (§3.5).

3.2 User-Space Preemption
To enable µs-scale preemptive scheduling in user space,
Skyloft utilizes a new hardware feature called User Interrupts
(UINTR), available on Intel Sapphire Rapids servers. Intel
has also submitted a patch for UINTR to the Linux kernel
[41]. UINTR allows interrupts to be delivered directly to
a user-space handler without switching address spaces or
privilege levels, offering a low-overhead mechanism for
event dispatch and inter-processor communication.

Resources related to UINTR. A dedicated interrupt vec-
tor is used to identify user interrupts [13], configured in the
UINV (User-Interrupt Vector) register. Each receiving thread
registers a user-interrupt handler through the UIHANDLER
(User-Interrupt Handler) register and maintains a User Posted-
Interrupt Descriptor (UPID) in memory, which contains es-
sential information. For instance, the PIR (Posted-Interrupt
Requests) field in the UPID holds interrupts posted by a
sender; a non-empty PIR value indicates that a user interrupt
has been raised. Before invoking the handler, the core sets the
appropriate bit in the User Interrupt Request Register (UIRR),
which is a bitmap representing up to 64 different interrupts,
based on the PIR value.

Sending a user interrupt. User interrupts are typically gen-
erated using the SENDUIPI instruction. Each sender maintains
a User-Interrupt Target Table (UITT) in memory, with each
entry containing the UPID address of the receiver and the
notification vector. The SENDUIPI instruction takes the index
of the UITT entry as its operand, sets the corresponding bit in
the PIR, and then sends a standard Inter-Processor Interrupt
(IPI) to the target CPU via the local Advanced Programmable
Interrupt Controller (APIC).

User-interrupt handling. The process of handling a user
interrupt involves the following steps: (1) Identification:
When the core receives an interrupt V, it proceeds to the next
step if V matches the UINV value. Otherwise, V is treated as
a legacy interrupt. (2) Processing: The core sets each bit in
the UIRR based on the bits set in the PIR field of the UPID,
detecting a pending user interrupt. (3) Delivery: Once the
CPU enters user mode and the UIRR is set, the user inter-
rupt is delivered. The current state, such as the stack pointer,
instruction pointer, etc., is saved onto the stack, and control
flow jumps to the user-interrupt handler. (4) Handling: The
interrupt handler completes context saving and handles the
interrupt. Once finished, it restores the context and executes
the UIRET instruction to return to normal execution.

In Skyloft, preemption can be triggered through two mecha-
nisms: by sending IPIs to other cores, or by utilizing hardware-
generated timer interrupts.

Preemption with IPIs. This method is particularly well-
suited for the centralized scheduling models illustrated in
Figure 2b. A dispatcher periodically assesses the need to pre-
empt tasks on other worker cores, acting as a clock source.
When preemption is necessary, the dispatcher sends a user
IPI via the SENDUIPI instruction to the targeted core, trigger-
ing the user-interrupt handler. The main advantage of this
approach is its flexibility, as the frequency of preemption
signals can be dynamically adjusted based on workload fluc-
tuations [35]. However, this method requires a dedicated core
for the dispatcher, which reduces overall throughput since
it cannot be used for regular task execution. Moreover, the
constant monitoring of all worker cores by the dispatcher
can introduce bottlenecks, particularly in systems with many
cores, thus limiting scalability [28, 30].

Preemption with timer interrupts. Timer interrupts are cru-
cial for supporting per-CPU scheduling models, as illustrated
in Figure 2a, and they eliminate the need for a dedicated dis-
patcher core. However, implementing user-space handling of
hardware interrupts, including timer interrupts, presents sig-
nificant challenges. To the best of our knowledge, no existing
research or documentation has addressed the facilitation of
user-space hardware interrupt handling, nor is it covered in
the Intel manual [13]. Skyloft implements two critical steps to
manage hardware interrupts, such as timer interrupts, in user
space. The first step involves configuring the UINV register

5

with the timer interrupt vector, enabling the core to recog-
nize the timer interrupt as a user interrupt. However, this
step alone is insufficient because the PIR is not automatically
updated when a timer event occurs. Since the PIR remains
empty, the core does not trigger the user-interrupt handling
process. Therefore, the second step—updating the PIR—is
more challenging. While the SENDUIPI instruction could be
used to update the PIR, this would unnecessarily generate an
IPI. Fortunately, we discovered that a bit in the UPID, known
as SN (Suppress Notification), can prevent the generation of
an actual IPI. As a result, Skyloft requires each core to send
itself an IPI with the SN bit set, effectively updating the PIR
without triggering an IPI.

To configure Skyloft for handling hardware interrupts, the
following steps are performed: (1) Initialize each thread’s
UPID and set the SN bit. (2) Execute SENDUIPI to populate
the PIR with a non-empty value (using any interrupt num-
ber), allowing the first hardware interrupt to be handled in
user space. (3) After entering the interrupt handler, execute
SENDUIPI again to ensure subsequent hardware interrupts are
handled in user space. By following these steps, Skyloft suc-
cessfully delegates local APIC timer interrupts to user space,
enabling support for per-CPU preemptive scheduling policies.

3.3 Scheduling Threads Across Applications

Managing kernel threads. To simplify the overall design,
Skyloft seeks to reuse the existing process and thread abstrac-
tions as much as possible. Process represents an application’s
global resources, such as address space and file table, while
kernel threads represent the application’s CPU resources.

Skyloft allocates a specific number of isolated cores for the
applications it schedules. When an application is launched,
Skyloft creates a number of kernel threads equal to the number
of isolated cores and binds each thread to one of these cores.
As a result, each core is associated with a set of kernel threads,
corresponding to the number of initiated applications. Among
these kernel threads, only those in the runnable state are
selected by the kernel scheduler for execution. Threads that
are exited, suspended, or blocked do not appear in the kernel
scheduler’s runqueue. These are referred to as active and
inactive kernel threads, respectively. The primary challenge is
to prevent scheduling interference from the kernel in Skyloft.
To address this, Skyloft enforces the Single Binding Rule:

Single Binding Rule: No two or more active ker-
nel threads may be bound to the same isolated core
simultaneously.

By following this rule, the kernel scheduler is entirely by-
passed. Each core’s single active kernel thread is associated
with the application currently running on that core. Skyloft
then manages the user threads within each application. As
shown in Figure 3, every application has one active kernel
thread occupying distinct isolated cores. To enforce the bind-
ing rule when launching a new application, Skyloft binds

newly created kernel threads to isolated cores and immedi-
ately suspends them, making them inactive until they are later
activated.

In principle, kernel threads not managed by Skyloft can still
be bound to isolated cores if their CPU affinity is manually set
and they are in a runnable state. As these threads do not share
state with Skyloft, potential interference may occur, possibly
leading to performance degradation. To avoid this issue, it
is recommended that regular applications not managed by
Skyloft refrain from manually setting CPU affinity.

B C C A A B

C

A BApp 1

App 2

Runqueue

uthread switch kthread switch

Figure 4. Skyloft switches user-level threads within the same
application(A → B) and between different applications(B →
C).

Scheduling user threads. Skyloft organizes all user threads
from all applications into either a single global runqueue
or per-CPU runqueues, depending on the chosen scheduling
policy. These runqueues are shared across all applications.

A running user thread may yield or be preempted by an-
other user thread. The next thread to execute is selected from
the shared runqueue based on the scheduling policy. As il-
lustrated in Figure 4, if the next thread belongs to the same
application, the switch can occur directly in user space with-
out kernel intervention. However, if the next thread is from a
different application, an application switch is required. This
involves setting the current application’s active kernel thread
to inactive (suspending it) and activating (waking up) the in-
active kernel thread of the target application. Both steps must
occur simultaneously in the kernel to uphold the binding rule.
Since the overhead of switching between applications is con-
siderably higher than switching within the same application
(§5.4), minimizing inter-application thread switching is an
important metric for scheduling policies to consider.

Application termination. When all user threads of an applica-
tion have completed execution (or if the application manually
invokes exit()), the application and all its kernel threads will
be terminated. Before terminated, an active kernel thread of
the application must wake up another thread on the same core
first. Otherwise, once the sole active thread exits, there will
be no active threads left on that core, leading to the potential
issue of inactive kernel threads never being woke up.

Additionally, since a kernel thread must reclaim its re-
sources before terminating, which must be performed by the
thread itself, each kernel thread remains in a runnable state un-
til it fully exits. To adhere to the binding rule, Skyloft rebinds
active kernel threads to non-isolated cores before allowing
them to exit independently, or it sends a termination signal to
inactive threads.

6

As described, the kernel must perform several operations
simultaneously, such as transitioning kernel thread states or
adjusting CPU affinity. Skyloft implements these operations
within a Linux kernel module, providing access to these func-
tionalities for the Skyloft scheduler through the ioctl() in-
terface (§4.2).

3.4 General Scheduling Operations
Inspired by both recent latency-optimized centralized sched-
ulers [30] and traditional per-CPU schedulers in Linux [9, 56],
Skyloft defines a set of operations to facilitate implementing
schedulers in user space. As shown in Table 2, these op-
erations include runqueue and task state manipulations for
managing user threads, as well as event callbacks. For exam-
ple, sched_timer_tick() is invoked in the timer interrupt
handler to determine whether preemption is required. Based
on these operations, high-level thread primitives (e.g., pthread
functions) can be implemented.

Certain operations are tied to specific scheduling models. In
per-CPU schedulers with multiple runqueues, task imbalance
can significantly degrade performance [40, 45, 48]. To ad-
dress this, Skyloft provides the sched_balance() operation,
enabling policy-defined load balancing (e.g., work stealing
[7]). On the other hand, centralized schedulers with a single
queue are naturally balanced [30], so the sched_balance()
operation is not necessary. Instead, the dispatcher must call
sched_poll() to distribute tasks from the global runqueue
to each worker core.

3.5 Integration with User-Space I/O Frameworks
Skyloft adopts a design similar to existing dataplane operating
systems [5, 30, 45, 48], integrating high-performance user-
space I/O frameworks for applications. For instance, Skyloft
leverages DPDK [18] to poll network on a dedicated core.
When a packet is received, it is distributed to the appropriate
isolated core of Skyloft via a shared ring buffer based on the
Receive Side Scaling (RSS) [15] hash value. A lightweight
user-space TCP and UDP stack is integrated to parse net-
work packets and provide POSIX-compliant socket interfaces
to applications. When a thread is blocked by a request, the
scheduler suspends it and switches to other threads. Idle cores
also poll the ingress pool, creating new threads to process
incoming packets.

4 Implementation
Skyloft operates on top of Linux, comprising 9K lines of C
code for the LibOS and an additional 4K lines of C code
to integrate DPDK and implement the TCP/UDP network
stacks. Skyloft is linked with the application and runs as a
process in user space. The Skyloft kernel module consists of
325 lines of C code. Additionally, we modified 163 lines of
code in the UINTR kernel patch [41] to support user-space
timer interrupts.

4.1 Skyloft LibOS

Scheduler Initialization. Skyloft uses the kernel command
line parameter isolcpus to reserve isolated cores. Although
Linux may still run some background threads on these cores
[26], it does not interfere with Skyloft’s scheduler and has
minimal impact on performance.

A daemon starts before any applications and is responsible
for initializing shared states. The daemon then creates a num-
ber of kernel threads equal to the number of isolated cores us-
ing the pthread library and binds these threads to the isolated
cores with sched_setaffinity(). For subsequent applica-
tions, the initialization process is similar, but instead of di-
rectly binding the kernel threads, skyloft_park_on_cpu(),
provided by the Skyloft kernel module (§4.2), is used to bind
and suspend the kernel thread.

For each application, an idle user thread is created first on
each kernel thread to run the main scheduling loop until it
finds another runnable user thread to schedule. We implement
a fast path for directly switching between two threads. If no
runnable user thread is available, the scheduler saves the cur-
rent thread’s context and re-enters the main loop to perform
further operations, such as load balancing.

Shared memory. Different applications use shared memory
to exchange data, including application metadata, runqueues,
memory pools for shared data structures. Each application
must link an identical copy of the Skyloft library to ensure that
the same version of the scheduler code and shared memory
structures is used, regardless of which application is running.
The application metadata stores the IDs of its kernel threads
(obtained via gettid()), which are used by other applications
to wake them up. The shared runqueue holds all runnable
user threads, and the scheduler selects a user thread to run
based on the defined scheduling policy. Each user thread
includes fields that are visible to other applications, such as
the thread state, the application it belongs to, and an extra
field reserved for policy-defined data. This ensures that no
matter which application is running, consistent scheduling
information is visible. Skyloft maintains a memory pool in
the shared memory dedicated to these structures. Additionally,
each user thread has private fields, such as its context and
stack, that are not visible to other applications.

User-interrupt configuration. The Linux UINTR patch [41]
has introduced kernel APIs for user-space IPIs, enabling pre-
emptive scheduling via user-space IPIs without requiring ad-
ditional kernel modifications. A dedicated dispatcher thread
is needed to send IPIs to other cores. Since the sender and
receiver may belong to different applications, file descriptors
opened by one are not visible to the other. To address this, we
use pidfd_get() to share the opened user interrupt file de-
scriptor (uvec_fd) between the sender and receiver, allowing
the sender to establish a connection with the receiver for send-
ing IPIs. Each application’s kernel thread on each isolated

7

Scheduling Operations Description

void task_init(struct task_t* task) Initializes the policy-defined field of a task.
void task_terminate(struct task_t* task) Finishes running a task and releases its policy-defined field.
void task_enqueue(struct task_t* task, int flags) Puts a task to the runqueue.
struct task_t* task_dequeue() Selects a task to run on and removes it from the runqueue.
void task_block() Suspends the current task.
void task_wakeup(struct task_t* task) Wakes up the task and puts it back to the runqueue.

void sched_init(void* data) Initializes policy-defined states of the scheduler.
bool sched_timer_tick() Updates scheduler states on each timer tick, returns true if rescheduling is

required (current task is preempted).
void sched_balance() Performs load balancing among runqueues (per-CPU policy only).
void sched_poll() Polls the global runqueue and dispatches tasks to worker cores (centralized

policy only).

Table 2. Scheduling interfaces defined by Skyloft to implement different scheduling policies.

APIs Description

App Lifecycle

skyloft_park_on_cpu(cpu_id) Binds the current kernel thread to the specified core and suspends.
skyloft_switch_to(target_tid) Suspends the current kernel thread and wakes up the target kernel

thread.
skyloft_wakeup(tid) Wakes up the specified kernel thread.

UINTR Configuration
skyloft_timer_enable() Enables user-space timer interrupts on the current core.
skyloft_timer_set_hz(hz) Configures the timer frequency on the current core.

Table 3. APIs provided by the Skyloft kernel module.

1 void __attribute__((interrupt))

2 uintr_handler(struct __uintr_frame *ui_frame,

3 unsigned long long vector) {

4 if (is_timer_uintr(vector)) {

5 _senduipi(uintr_idx); // reset UPID.PIR for next timer

6 }

7 // update policy-defined states, check preemption

8 bool is_preempted = sched_timer_tick();

9 // check if rescheduling is needed

10 if (preempt_enabled() && is_preempted) {

11 // put current task to end of runqueue

12 task_enqueue(current);

13 schedule(); // enter main scheduling loop

14 }

15 }

Listing 1. Global user-interrupt handler for centralized and
per-CPU schedulers.

core acts as a receiver, and the sender establishes connections
with all of them at the start.

Skyloft also supports preemption via user-space timer in-
terrupts without needing a dedicated dispatcher thread (§3.2),
though this functionality is not provided by the UINTR patch.
We address this with additional modifications to the UINTR
patch, configuring specific UINTR-related registers and al-
lowing the application to set the timer frequency.

User-interrupt handler. We implement a global user-
interrupt handler, as shown in Listing 1, for both centralized

and per-CPU schedulers using the operations described
in §3.4. For timer interrupts, the handler first resets the
UPID.PIR to prepare for the next timer interrupt (§3.2). The
handler then updates the policy-defined states and makes a
rescheduling decision if preemption is required.

4.2 Skyloft Kernel Module
The Skyloft kernel module is mounted as a miscellaneous de-
vice file at /dev/skyloft. It provides two key operations for
the user-space scheduler: atomic invocation of kernel APIs for
thread state transitions and execution of privileged operations
for user-interrupt configuration. These operations are made
available to user space through the ioctl() interface.

The upper half of Table 3 lists the operations for kernel
thread state transitions. As detailed in §3.3, these operations
are invoked when an application starts, switches, or termi-
nates. They are implemented using Linux kernel APIs, such
as setting CPU affinity, suspending, and waking up kernel
threads, without additional kernel code modifications.

The lower half of Table 3 outlines the operations necessary
for configuring user-space timer interrupts. As discussed in
§3.2, user-space timer interrupts are enabled by setting UINV
and UPID.SN, and the timer frequency can be configured
through the local APIC registers.

5 Evaluation
We evaluate Skyloft schedulers to address the following ques-
tions:

8

Linux CFS (kernel/sched/fair.c) 6,592 LOC
Linux RT (kernel/sched/rt.c) 1,939 LOC
Linxu EEVDF (Linux v6.8 kernel/sched/fair.c) 7,102 LOC

ghOSt Shinjuku 710 LOC
ghOSt Shinjuku-Shenango 727 LOC

Skyloft Round-Robin (§5.1) 141 LOC
Skyloft CFS (§5.1) 430 LOC
Skyloft EEVDF (§5.1) 579 LOC

Skyloft Shinjuku (§5.2) 192 LOC
Skyloft Shinjuku-Shenango (§5.2) 444 LOC

Skyloft Work-Stealing (Preemptive) (§5.3) 150 LOC

Table 4. Lines of code for different schedulers.

• What is the impact of Skyloft’s timer-interrupt delega-
tion on per-CPU schedulers? (§5.1)

• How do Skyloft schedulers perform across multiple ap-
plications compared to ghOSt, a general-purpose sched-
uling framework? (§5.2)

• How does Skyloft handle real-world applications with
light- and heavy-tailed workloads? (§5.3)

• What are the overheads associated with Skyloft opera-
tions? (§5.4)

Evaluated schedulers. To compare with existing systems,
we have implemented several schedulers using Skyloft. Ta-
ble 4 shows the lines of code (LOC) required for Skyloft and
other systems, such as the Linux scheduling subsystem and
ghOSt. Each Skyloft scheduler is implemented with only a
few hundred lines of code, significantly fewer than the com-
pared systems. This efficiency demonstrates the advantages
of Skyloft’s approach to developing preemptive schedulers
entirely in user space, without requiring kernel intervention.
In contrast, scheduling in previous user-space frameworks is
often tightly integrated with other functionalities and lacks
flexibility for different policies (e.g., Shinjuku [30] consists
of 3,900 LOC and relies heavily on Dune [4]).

Experimental setup. We evaluated Skyloft on a Sapphire
Rapids server that supports user interrupts. The server is
equipped with two 24-core (48-hyperthread) Intel Xeon Gold
5418Y CPUs running at 2.0 GHz, along with 128 GB of
RAM. To optimize for low latency, we configured the server
according to best practices, disabling TurboBoost, CPU idle
states, CPU frequency scaling, and transparent hugepages.
For networking tests, we used a dual-socket client with 16-
core Intel Xeon E5-2683 v4 CPUs at 2.1 GHz and 128 GB
of RAM. Both the server and the client were equipped with
a 10 Gb/s Intel 82599ES NIC. Unless otherwise noted, most
evaluations on the server were conducted using DPDK 22.11
and a Linux kernel version 6.0.0, which was modified to
support Intel user interrupts.

5.1 User-Space Timer Interrupts
To evaluate Skyloft’s timer-interrupt delegation, we imple-
mented per-CPU scheduling policies and compared them with
Linux’s schedulers, including SCHED_RR and SCHED_BATCH,
which use Round-Robin (RR) with time slicing, and the Com-
pletely Fair Scheduler (CFS), respectively.

We use schbench [39] (v1.0), a widely used scheduler
benchmarking tool [19], to evaluate various schedulers.
Schbench simulates a typical network application by creating
M message threads and T worker threads. The message
threads continuously wake up the worker threads to perform
simulated tasks (e.g., matrix multiplication). Once the tasks
are completed, the worker threads enter a sleep state, waiting
for the message threads to wake them up for the next request.

We configure Skyloft with 24 isolated cores. For Linux,
schbench is also bound to 24 cores using the taskset com-
mand. The RR policy is applied using the chrt command.
For both RR and CFS policies on Linux, schbench is set to
the highest priority. Schbench is configured with default pa-
rameters (approximately 2,300 µs per request), using a single
message thread, and the number of worker threads is grad-
ually increased to saturate the cores. When the number of
worker threads exceeds the number of cores, wakeup latency
is affected by queuing time. Figure 5 compares the wakeup
latencies of worker threads across the four schedulers. For
both Skyloft and Linux, CFS slightly outperforms RR due
to its compensation for blocked threads [56]. Since Skyloft
can handle timer interrupts at µs scale with low overhead, it
achieves significantly lower wakeup latencies compared to
Linux schedulers , even when Linux CFS is tuned to reduce
wakeup latency.

Similar to CFS, the Earliest Eligible Virtual Deadline First
(EEVDF) scheduler aims to provide a fair share of CPU time
to all runnable tasks, introduced in Linux v6.6 [9, 11, 54].
However, unlike CFS, which relies on various empirical
heuristics, EEVDF uses a well-defined mechanism based on a
lag value to decide which task to schedule. We implemented
the EEVDF scheduling policy in Skyloft and compared it
with CFS. As shown in Figure 5, Skyloft’s EEVDF outper-
forms Skyloft’s CFS. We also evaluated Linux EEVDF on
Linux v6.8 (the latest Hardware Enablement (HWE) kernel
on Ubuntu 22.04 LTS). Linux EEVDF performs similarly to
CFS (with both default and tuned parameters), as the wakeup
latency is constrained by the timer frequency.

Additionally, we evaluated the impact of different preemp-
tion frequencies on wakeup latency. As shown in Figure 6,
the wakeup latency in schbench is roughly proportional to the
time slice: smaller time slices result in lower wakeup latency.

5.2 Synthetic Workload Comparison
We evaluate a centralized scheduling policy from recent re-
search, Shinjuku [30], designed to support µs-scale latency
for network applications. In Shinjuku, a spinning dispatcher

9

CONFIG_HZ (Linux) /
TIMER_HZ (Skyloft)

min_granularity (CFS) /
base_slice (EEVDF)

time_slice (RR) /
sched_latency (CFS)

Linux RR (default) 250 - 100ms
Linux CFS (default) 250 3ms 24ms
Linux CFS (tuned) 1,000 12.5µs 50µs
Linux EEVDF (default) 1,000 3ms -
Linux EEVDF (tuned) 1,000 12.5µs -

Skyloft RR 100,000 - 50µs
Skyloft CFS 100,000 12.5µs 50µs
Skyloft EEVDF 100,000 12.5µs -

Table 5. Parameters for scheduling policies. For Linux, the maximum configurable timer interrupt frequency is 1000 Hz.

0 16 32 48 64 80 96
1 s

10 s

100 s

1ms

10ms Linux-RR
Linux-CFS
Linux-CFS-opt
Linux-EEVDF
Linux-EEVDF-opt
Skyloft-EEVDF
Skyloft-RR
Skyloft-CFS

99
%

 w
ak

eu
p

la
te

nc
y

Number of worker threads

Figure 5. Schbench performance with different scheduling
policies. The corresponding parameters of each test are shown
in Table 5.

0 16 32 48 64 80 96
1 s

10 s

100 s

1ms

10ms

Skyloft-FIFO
Skyloft-RR (1ms)
Skyloft-RR (200 s)
Skyloft-RR (50 s)

99
%

 w
ak

eu
p

la
te

nc
y

Number of worker threads

Figure 6. Schbench wakeup latency with different RR time
slices. Skyloft-FIFO represents an infinite time slice and no
preemption will occur.

runs on a dedicated core and maintains a global queue. The
dispatcher manages incoming requests and dispatches them
to idle workers running on other cores. Each request is pre-
empted by the dispatcher and returned to the global queue if
it exceeds a limited quantum. We compare four implementa-
tions of this policy:

(1) The original Shinjuku system, which leverages posted
interrupts to preempt workers. We run Shinjuku on
Linux 4.4 due to compatibility issues with Dune on
newer versions.

(2) The ghOSt-Shinjuku global agent, which makes sched-
uling decisions by committing transactions [26]. We
run ghOSt on Linux 5.11 as porting ghOSt to newer
versions requires significant effort.

(3) The Skyloft-Shinjuku dispatcher, which sends a user
interrupt to preempt a worker.

(4) A non-preemptive version running on Linux CFS.

Single workload. As described in the ghOSt paper [26], we
implement a load generator and request handlers for synthetic
workloads. We generate a workload consisting of 99.5% short
requests and 0.5% long requests, with execution times of
4µs and 10ms, respectively. One core is used for the load
generator and dispatcher (except in the case of Linux CFS),
and 20 cores are used as workers.

Figure 7a presents the performance of different implemen-
tations. The choice of preemption quantum has a significant
impact on tail latency and maximum throughput. We find that
a preemption quantum of 30µs yields the best results. While
higher preemption frequencies can further reduce tail latency,
they also increase the overhead from interrupt handling, which
reduces maximum throughput. Linux CFS achieves 58.7%
of the maximum throughput compared to Skyloft. This is be-
cause Linux CFS is designed for fairness rather than latency-
sensitive applications. Skyloft and Shinjuku show similar
performance, as both use low-overhead preemption mecha-
nisms. In contrast, ghOSt performs worse, with maximum
throughput reaching only 80.1% of Skyloft (at 30µs), and
the 99% tail latency at low load is three times higher than
that of Skyloft. This is due to ghOSt relying on Linux ker-
nel threads, which incur significant overhead from context
switches during preemption. Additionally, ghOSt’s perfor-
mance is affected by frequent communication between the
user agent and the kernel.

Multiple workloads. A general-purpose scheduling frame-
work should support scheduling multiple applications to im-
prove CPU utilization. To demonstrate Skyloft’s ability to han-
dle multi-application scheduling, we evaluate a high-priority,
latency-sensitive application co-located with a low-priority
batch application on the same machine [26].

We implement Shenango’s core allocation strategy [45]
with the centralized policy mentioned earlier. Based on task
queuing times, the dispatcher periodically checks if the global
queue of requests is congested. If congestion is detected, the
cores running the batch application are preempted and yield

10

0 100 200 300
Throughput (kRPS)

0

200

400

600

800

1000

99
%

 L
at

en
cy

 (
s)

CFS
ghOSt (30 s)
Shinjuku (30 s)
Skyloft (30 s)

(a) Tail latency for a dispersive load.

0 100 200 300
Throughput (kRPS)

0

200

400

600

800

1000

99
%

 L
at

en
cy

 (
s)

(b) Tail latency for a dispersive load co-located
with a batch application.

0 100 200 300
Throughput (kRPS)

0

0.2

0.4

0.6

0.8

1

Ba
tc

h
CP

U
Sh

ar
e

(c) CPU share of the batch application.

Figure 7. Skyloft implements a centralized scheduling policy and ensures CPU sharing without compromising tail latency.
Shinjuku ➊ is unable to allocate resources to run another application effectively, it cannot support the batch application (with
zero CPU share).

to tasks from the latency-sensitive application. The strategy
aims to allocate idle cores to the batch application when the
latency-sensitive application is not busy, maximizing CPU
utilization while ensuring low tail latency under peak loads.

Figure 7b shows that we can achieve the same tail latency as
the original centralized policy. Compared with ghOSt, Skyloft
increases maximum throughput by 19% and reduces 99% tail
latency by 33%. More importantly, Figure 7c demonstrates
that we achieve a similar CPU share for the batch application
at different load levels compared to both Linux and ghOSt.

5.3 Real-World Applications
Skyloft can flexibly support scheduling policies for real-world
applications. Skyloft leverages the approach described in Sec-
tion 3.5 to provide kernel-bypass network functionality. We
evaluate two popular applications: Memcached [17] (v1.5.6),
and a UDP-based RocksDB [42] (v6.15.5) server, each han-
dling different types of network requests. Memcached is an
in-memory key-value store with light-tailed workloads, while
RocksDB is a persistent key-value store with heavy-tailed
workloads. A separate machine is used as a client, running an
open-loop load generator to send requests to the Memcached
or RocksDB server, following a Poisson arrival process.

Memcached. For Memcached, the client generates the
USR workload [3], consisting of 99.8% GET requests and
0.2% SET requests. To saturate the server, we configure 4
worker cores for both Skyloft and Shenango. We implement
a work-stealing policy similar to Shenango [45] to achieve
load balance and low tail latency for light-tailed workloads.
As shown in Figure 8a, Skyloft performs comparably to
Shenango, within 2% of its maximum throughput. At low
loads, Skyloft exhibits slightly lower tail latencies than
Shenango, as Shenango incurs additional overhead due to
frequent core adjustments, yielding, and wake-ups for a
single application.

RocksDB server. We configure the client to generate a work-
load with a bimodal distribution, consisting of 50% GET
and 50% SCAN requests, with processing times of 0.95µs

0 0.5 1 1.5 2 2.5
0

100

200

300

400

500
Shenango
Skyloft

99
.9

%
 L

at
en

cy
 (

s)

Throughput (MRPS)

(a) USR workload (99.8% GETs, 0.2% SETs) of Memcached.

0 10 20 30 40
0

50

100

150

200
Shenango
Skyloft (no preemption)
Skyloft (20 s)
Skyloft (5 s)
Skyloft (5 s utimer)

99
.9

%
 S

lo
wd

ow
n

Throughput (kRPS)

(b) Bimodal workload (50% GETs, 50% SCANs) of RocksDB Server.

Figure 8. Skyloft flexibly supports both light- and heavy-
tailed workloads for real-world applications.

and 591µs, respectively. We allocate 14 worker cores for
both Skyloft and Shenango to ensure the server is fully satu-
rated. Without any modifications to the scheduler, we enable
Skyloft’s timer-interrupt handler for the work-stealing policy.
Skyloft improves the tail latency of short requests by pre-
empting each core using timer interrupts. We compare the
throughput at a target 99.9% Slowdown, which represents the
ratio of total response time to the original service time. By us-
ing tail Slowdown instead of latency, we effectively evaluate
the dispersive workload (where absolute latencies of requests
vary significantly) against a common Service Level Objective
(SLO). As shown in Figure 8b, Skyloft supports preemption
quanta as low as 5µs. Due to its lack of µs-scale preemption,
Shenango exceeds the slowdown SLO much earlier for the
heavy-tailed workload. Skyloft sustains 1.9× more load than
Shenango at a quantum of 5µs for a target slowdown of 50×.

11

Send Receive Delivery

Signal 1,224 6,359 5,274
Kernel IPI 437 1,582 1,345
User IPI 167 661 1,211
User IPI (cross NUMA nodes) 178 883 1,782

setitimer — 5,057 —
User timer interrupt — 642 —

Table 6. Preemption mechanism comparison (cycles).

We also use a dedicated core to emulate a timer (called
utimer) and send IPIs to 13 worker cores with a 5µs quantum.
The results show that, compared to local APIC timer inter-
rupts, software-emulated timer interrupts reduce performance
by 13% due to the absence of one worker core.

5.4 Microbenchmarks

User-space preemption overhead. We measure the overhead
of user interrupts and compare it with other notification mech-
anisms. The sender and receiver threads are bound to different
cores on the same socket. The receiver’s event handler is a
no-op. In this setup, both Linux signals and kernel IPIs need
to access the local APIC to send interrupts. We configure the
local APIC in x2APIC mode, which is accessed through the
MSR (Model-Specific Register) instead of MMIO (Memory-
Mapped I/O). Table 6 shows the results, including the time
spent by the sender on the send operation, the time spent by
the receiver on event handling (including context saving and
restoring), and the delivery latency. Linux signal has the high-
est overhead, which involves several switches between user
and kernel. Neither sending nor receiving user IPIs involves a
privilege level change, resulting in lower overhead than other
mechanisms.

We also measure the overhead of user timer interrupts
and compare it with the traditional signal-based user timer
(setitimer in Linux). A timer interrupt can be generated
either by the local APIC timer or from another core (utimer,
as described in §5.3). The lower part of Table 6 shows the
results. The signal-based timer requires several switches be-
tween user and kernel space, resulting in significantly higher
overhead compared to the user timer interrupt. The overhead
of simulating a timer on another core is similar to that of user
IPIs but increases when signaling cores on different NUMA
nodes. Therefore, using extra cores as timers limits scalability.

It is also worth noting that, as described in Section 3.2,
receiving user-mode device interrupts requires an additional
senduipi instruction (with UPID.SN = 1) in the interrupt
handler, which takes approximately 123 cycles. Even with
this additional operation, the overhead of receiving user timer
interrupts remains lower than that of user IPIs, as timer inter-
rupts do not incur the overhead of cross-core communication.

pthread Go Skyloft

Yield 898 108 37
Spawn 15,418 503 191
Mutex 28 25 27
Condvar 2,532 262 86

Table 7. Threading operation comparison (ns).

User-level threading overhead. Skyloft implements low-
overhead thread operations through its user-level thread li-
brary. We evaluate the time required for several common
thread operations in Skyloft and compare them with native
Linux kernel threads (pthread) and user-level threads in the
Go programming language [22]. The results are shown in
Table 7. Skyloft achieves the lowest overhead for almost all
thread operations compared to other mechanisms.

We also measured the time for Skyloft’s inter-application
thread switching, which is 1,905ns. When switching between
threads of different applications, Skyloft requires additional
operations in the kernel, such as suspending and waking up
kernel threads and manipulating the kernel’s runqueue to
comply with the binding rule described in §3.3.

For Linux, the thread-switching time is 1,124ns if both
threads are runnable, and 2,471ns if one thread needs to wake
up another (e.g., in inter-process communication). Further
optimizations could provide a direct kernel thread context-
switching operation in Skyloft without the need to manipulate
the kernel’s runqueue.

6 Discussion
Kernel-bypass timer reset. Currently, the timer is set through
the kernel before running applications. We can enable appli-
cations to dynamically reset the timer by mapping the lo-
cal APIC address range to the application’s address space.
However, a potential risk of this emulation is that the core
may send an IPI to other cores, which should not be allowed
in non-privileged mode. To address this, a new instruction
could be introduced, allowing applications to modify the timer
deadline directly. Recently, a similar hardware feature, called
User-Timer Events, has been introduced in the programming
reference for Intel’s future processors [14].

Shared memory protection. Scheduling multiple applica-
tions in user space requires sharing data between different
address spaces, which can raise safety concerns. For instance,
malicious applications could tamper with the shared runqueue
to manipulate scheduling decisions. However, since the user
thread’s context and stack are not shared between applica-
tions, this does not lead to memory-related attacks on other
applications. Hardware mechanisms like Intel MPK (Memory
Protection Keys) [46] can be employed for isolation. R/W
permissions can be configured through a guardian code be-
fore entering the application. The risk arises from the fact that
Skyloft’s library and the application are linked together in

12

the same address space, meaning the application could poten-
tially modify permissions using the WRPKRU instruction. Prior
works have addressed this issue to some extent [23, 24, 36].
Other mechanisms, such as VMFUNC, are also possible.

Peripheral interrupts. Skyloft provides a unified method
for delegating peripheral interrupts to user space (§3.2). Both
external interrupts via the I/O APIC and Message Signaled
Interrupts (MSI) via the local APIC can be handled in user
space. Additionally, kernel-bypass I/O drivers can be imple-
mented with this mechanism, avoiding the need for polling or
kernel signaling.

Blocking events. Skyloft enforces the Single Binding Rule,
preventing multiple active kernel threads on the same core
(§3.3). An active kernel thread can be blocked by events such
as page faults or I/O operations. Skyloft can integrate various
techniques to minimize performance impact. For active block-
ing (e.g., I/O syscalls), asynchronous syscalls like aio and
io_uring can be used, or user-space file I/O can be imple-
mented with SPDK. For passive blocking (e.g., page faults),
userfaultfd can monitor the blockage on a non-isolated
core and reschedule other kernel threads from different ap-
plications on the blocked core without violating the Single
Binding Rule.

7 Related Works
User-level threading. To enable fast switching between ap-
plication tasks, user-level threading libraries such as Capric-
cio [57], QThreads [58], Fred [32], and others [6, 8, 38, 44,
52] multiplex user threads atop one or more kernel (native)
threads. With Skyloft providing POSIX-compatible threading
APIs and lightweight user-space scheduling facilities, these
libraries could be simplified by adopting a 1:1 thread mapping
model, instead of the more complex M:N model.

Core allocation. Latency can generally be reduced by provi-
sioning more cores for LC applications, but static partitioning
may result in wasted resources under fluctuating workloads.
Systems like Arachne [49], Shenango [45], Caladan [21], and
others [40] dynamically reallocate cores between LC and
BE applications, balancing latency and throughput. Skyloft
adopts core allocation policies similar to Shenango [45] for
multiple applications, while offering additional support for
more scheduling policies to achieve better latency for both
light- and heavy-tailed workloads.

Microsecond-scale preemption. Non-preemptive scheduling
policies can suffer from head-of-line blocking in the pres-
ence of high-dispersion workloads, requiring frequent pre-
emption to maintain lower tail latencies. Systems like Shin-
juku [30], Concord [28], and LibPreemptible [35] achieve
µs-scale preemption, with LibPreemptible being the most
similar to Skyloft in terms of preemption mechanisms. How-
ever, LibPreemptible only supports preemptive scheduling

within a single process, whereas Skyloft is capable of sched-
uling across multiple processes, thereby improving CPU effi-
ciency. While Perséphone [16] implements a non-preemptive
policy, it reserves a small number of cores specifically for
short requests, sometimes outperforming preemptive systems
under high-dispersion workloads. However, Perséphone re-
lies on applications to group incoming requests and is not
work-conserving[1].

Kernel-bypass and dataplane OSes. Emerging faster net-
work and storage devices demand shorter software I/O paths,
beyond what general-purpose kernels can provide. Libraries
like DPDK [18], SPDK [12], mTCP [29], and Strata [33]
move the driver and protocol stack to user space, tightly inte-
grating them with the application. Dataplane operating sys-
tems separate the dataplane from the control plane to optimize
throughput and latency. IX [5], Arrakis [47], and Demikernel
[60] focus on optimizing shorter datapaths, while ZygOS [48]
adopts work stealing for load balancing. Skyloft leverages
DPDK and incorporates datapath optimizations from previ-
ous works to build a high-performance user-space networking
system, in alignment with its µs-scale scheduling capabilities.

User-defined kernel scheduling. In addition to building
scheduler systems from scratch, several approaches aim to
improve existing kernel schedulers. Scheduler Activations
[2] provides APIs that allow applications to coordinate with
kernel thread scheduling. ghOSt [26] delegates kernel sched-
uling decisions to user-space agents, while Enoki [43] uploads
user-provided schedulers to run inside the kernel. Syrup [31]
coordinates thread and network scheduling with ghOSt and
eBPF support. Plugsched [37] is an SDK that enables live
updating of the Linux kernel scheduler. Like other user-space
schedulers, Skyloft can achieve more efficient scheduling by
bypassing kernel overhead.

8 Conclusion
Skyloft demonstrates significant advancements in user-space
scheduling, offering a robust framework that leverages user-
mode interrupt mechanisms to handle hardware timer inter-
rupts directly in user space. This architecture enables µs-scale
preemption, improving the performance of latency-sensitive
applications. With these preemption capabilities, Skyloft pro-
vides a flexible scheduling framework that supports various
scheduling policies.

Acknowledgments
We thank the anonymous reviewers and our shepherd Prof.
KyoungSoo Park for their constructive suggestions. The au-
thors from Tsinghua University are all in the Department
of Computer Science and Technology. This work was sup-
ported by Quan Cheng Laboratory (QCLZD202305), Nat-
ural Science Foundation of China (62141216). Correspon-
dence to: Yu Chen (yuchen@tsinghua.edu.cn), Kang Chen
(chenkang@tsinghua.edu.cn).

13

References
[1] Work-conserving scheduler. https://en.wikipedia.org/wiki/Work-

conserving_scheduler, 2024.
[2] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and

Henry M. Levy. Scheduler activations: effective kernel support for
the user-level management of parallelism. In Proceedings of the Thir-
teenth ACM Symposium on Operating Systems Principles, SOSP ’91,
page 95–109, New York, NY, USA, 1991. Association for Computing
Machinery.

[3] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike
Paleczny. Workload analysis of a large-scale key-value store. In
Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint
International Conference on Measurement and Modeling of Computer
Systems, SIGMETRICS ’12, page 53–64, New York, NY, USA, 2012.
Association for Computing Machinery.

[4] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Maz-
ières, and Christos Kozyrakis. Dune: Safe user-level access to privileged
CPU features. In 10th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 12), pages 335–348, Hollywood, CA,
October 2012. USENIX Association.

[5] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Chris-
tos Kozyrakis, and Edouard Bugnion. IX: A protected dataplane op-
erating system for high throughput and low latency. In 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
14), pages 49–65, Broomfield, CO, October 2014. USENIX Associa-
tion.

[6] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: an efficient
multithreaded runtime system. In Proceedings of the Fifth ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming,
PPOPP ’95, page 207–216, New York, NY, USA, 1995. Association
for Computing Machinery.

[7] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded
computations by work stealing. J. ACM, 46(5):720–748, sep 1999.

[8] Sol Boucher, Anuj Kalia, David G. Andersen, and Michael Kaminsky.
Lightweight preemptible functions. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20), pages 465–477. USENIX Association,
July 2020.

[9] Jonathan Corbet. An EEVDF CPU scheduler for Linux. https://lwn.
net/Articles/925371/, 2023.

[10] Jonathan Corbet. Deferred scheduling for user-space critical sections.
https://lwn.net/Articles/948870/, 2023.

[11] Jonathan Corbet. Completing the EEVDF scheduler. https://lwn.net/
Articles/969062/, 2024.

[12] Intel Corporation. Introduction to the Storage Performance Devel-
opment Kit (SPDK). https://www.intel.com/content/www/us/en/
developer/articles/tool/introduction-to-the-storage-performance-
development-kit-spdk.html, 2016.

[13] Intel Corporation. Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual Volume 3A: System Programming Guide, Part 1, chapter
User Interrupts, pages 7.1–7.8. 2023.

[14] Intel Corporation. Intel® Architecture Instruction Set Extensions and
Future Features Programming Reference, chapter User-Timer Events
and Interrupts, pages 13.1–13.3. Number 319433-052. March 2024.

[15] Microsoft Corporation. Introduction to receive side scal-
ing. https://learn.microsoft.com/en-us/windows-hardware/drivers/
network/introduction-to-receive-side-scaling, 2023.

[16] Henri Maxime Demoulin, Joshua Fried, Isaac Pedisich, Marios Kogias,
Boon Thau Loo, Linh Thi Xuan Phan, and Irene Zhang. When idling
is ideal: Optimizing tail-latency for heavy-tailed datacenter workloads
with Perséphone. In Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles, SOSP ’21, page 621–637, New York,
NY, USA, 2021. Association for Computing Machinery.

[17] Dormando. memcached - a distributed memory object caching system.
https://memcached.org, 2018.

[18] DPDK Project. DPDK. https://www.dpdk.org, 2023.
[19] Matt Fleming. A survey of scheduler benchmarks. https://lwn.net/

Articles/725238/, 2017.
[20] Matt Fleming. A thorough introduction to eBPF. https://lwn.net/

Articles/740157/, 2017.
[21] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay.

Caladan: Mitigating interference at microsecond timescales. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20), pages 281–297. USENIX Association, November 2020.

[22] Google. The Go Programming Language. https://go.dev, 2024.
[23] Jinyu Gu, Xinyue Wu, Wentai Li, Nian Liu, Zeyu Mi, Yubin Xia, and

Haibo Chen. Harmonizing performance and isolation in microker-
nels with efficient intra-kernel isolation and communication. In 2020
USENIX Annual Technical Conference (USENIX ATC 20), pages 401–
417. USENIX Association, July 2020.

[24] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John
Criswell, Michael L. Scott, Kai Shen, and Mike Marty. Hodor: Intra-
Process isolation for High-Throughput data plane libraries. In 2019
USENIX Annual Technical Conference (USENIX ATC 19), pages 489–
504, Renton, WA, July 2019. USENIX Association.

[25] Tejun Heo. sched: Implement BPF extensible scheduler class. https:
//lwn.net/Articles/951156/, 2023.

[26] Jack Tigar Humphries, Neel Natu, Ashwin Chaugule, Ofir Weisse,
Barret Rhoden, Josh Don, Luigi Rizzo, Oleg Rombakh, Paul Turner,
and Christos Kozyrakis. ghOSt: Fast & flexible user-space delegation of
linux scheduling. In Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles, SOSP ’21, page 588–604, New York,
NY, USA, 2021. Association for Computing Machinery.

[27] Calin Iorgulescu, Reza Azimi, Youngjin Kwon, Sameh Elnikety, Manoj
Syamala, Vivek Narasayya, Herodotos Herodotou, Paulo Tomita, Alex
Chen, Jack Zhang, and Junhua Wang. PerfIso: Performance isolation
for commercial Latency-Sensitive services. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18), pages 519–532, Boston, MA,
July 2018. USENIX Association.

[28] Rishabh Iyer, Musa Unal, Marios Kogias, and George Candea. Achiev-
ing microsecond-scale tail latency efficiently with approximate optimal
scheduling. In Proceedings of the 29th Symposium on Operating Sys-
tems Principles, SOSP ’23, page 466–481, New York, NY, USA, 2023.
Association for Computing Machinery.

[29] EunYoung Jeong, Shinae Wood, Muhammad Jamshed, Haewon Jeong,
Sunghwan Ihm, Dongsu Han, and KyoungSoo Park. mTCP: a highly
scalable user-level TCP stack for multicore systems. In 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
14), pages 489–502, Seattle, WA, April 2014. USENIX Association.

[30] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay,
David Mazières, and Christos Kozyrakis. Shinjuku: Preemptive sched-
uling for µsecond-scale tail latency. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19), pages 345–
360, Boston, MA, February 2019. USENIX Association.

[31] Kostis Kaffes, Jack Tigar Humphries, David Mazières, and Christos
Kozyrakis. Syrup: User-defined scheduling across the stack. In Pro-
ceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles, SOSP ’21, page 605–620, New York, NY, USA, 2021. As-
sociation for Computing Machinery.

[32] Martin Karsten and Saman Barghi. User-level threading: Have your
cake and eat it too. Proc. ACM Meas. Anal. Comput. Syst., 4(1), may
2020.

[33] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett
Witchel, and Thomas Anderson. Strata: A cross media file system. In
Proceedings of the 26th Symposium on Operating Systems Principles,
SOSP ’17, page 460–477, New York, NY, USA, 2017. Association for
Computing Machinery.

14

https://en.wikipedia.org/wiki/Work-conserving_scheduler
https://en.wikipedia.org/wiki/Work-conserving_scheduler
https://lwn.net/Articles/925371/
https://lwn.net/Articles/925371/
https://lwn.net/Articles/948870/
https://lwn.net/Articles/969062/
https://lwn.net/Articles/969062/
https://www.intel.com/content/www/us/en/developer/articles/tool/introduction-to-the-storage-performance-development-kit-spdk.html
https://www.intel.com/content/www/us/en/developer/articles/tool/introduction-to-the-storage-performance-development-kit-spdk.html
https://www.intel.com/content/www/us/en/developer/articles/tool/introduction-to-the-storage-performance-development-kit-spdk.html
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://memcached.org
https://www.dpdk.org
https://lwn.net/Articles/725238/
https://lwn.net/Articles/725238/
https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://go.dev
https://lwn.net/Articles/951156/
https://lwn.net/Articles/951156/

[34] Jacob Leverich and Christos Kozyrakis. Reconciling high server uti-
lization and sub-millisecond quality-of-service. In Proceedings of the
Ninth European Conference on Computer Systems, EuroSys ’14, New
York, NY, USA, 2014. Association for Computing Machinery.

[35] Yueying Li, Nikita Lazarev, David Koufaty, Tenny Yin, Andy Anderson,
Zhiru Zhang, G. Edward Suh, Kostis Kaffes, and Christina Delimitrou.
LibPreemptible: Enabling fast, adaptive, and hardware-assisted user-
space scheduling. In 2024 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pages 922–936, 2024.

[36] Jiazhen Lin, Youmin Chen, Shiwei Gao, and Youyou Lu. Fast core
scheduling with userspace process abstraction. In Proceedings of the
30th ACM Symposium on Operating Systems Principles, SOSP ’24,
New York, NY, USA, 2024. Association for Computing Machinery.

[37] Teng Ma, Shanpei Chen, Yihao Wu, Erwei Deng, Zhuo Song, Quan
Chen, and Minyi Guo. Efficient scheduler live update for linux kernel
with modularization. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3, ASPLOS 2023, page 194–207, New
York, NY, USA, 2023. Association for Computing Machinery.

[38] Brian D. Marsh, Michael L. Scott, Thomas J. LeBlanc, and Evangelos P.
Markatos. First-class user-level threads. In Proceedings of the Thir-
teenth ACM Symposium on Operating Systems Principles, SOSP ’91,
page 110–121, New York, NY, USA, 1991. Association for Computing
Machinery.

[39] Chris Mason. schbench. https://kernel.googlesource.com/pub/scm/
linux/kernel/git/mason/schbench/+/refs/tags/v1.0, 2023.

[40] Sarah McClure, Amy Ousterhout, Scott Shenker, and Sylvia Ratnasamy.
Efficient scheduling policies for Microsecond-Scale tasks. In 19th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 22), pages 1–18, Renton, WA, April 2022. USENIX Association.

[41] Sohil Mehta. x86 user interrupts support. https://lwn.net/Articles/
869140/, 2021.

[42] Meta Platforms, Inc. RocksDB - A persistent key-value store. https:
//rocksdb.org, 2022.

[43] Samantha Miller, Anirudh Kumar, Tanay Vakharia, Ang Chen, Danyang
Zhuo, and Thomas Anderson. Enoki: High velocity linux kernel sched-
uler development. In Proceedings of the Nineteenth European Confer-
ence on Computer Systems, EuroSys ’24, page 962–980, New York,
NY, USA, 2024. Association for Computing Machinery.

[44] Jun Nakashima and Kenjiro Taura. MassiveThreads: A thread library
for high productivity languages. In Gul Agha, Atsushi Igarashi, Naoki
Kobayashi, Hidehiko Masuhara, Satoshi Matsuoka, Etsuya Shibayama,
and Kenjiro Taura, editors, Concurrent Objects and Beyond: Papers
dedicated to Akinori Yonezawa on the Occasion of His 65th Birthday,
pages 222–238, Berlin, Heidelberg, 2014. Springer.

[45] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and
Hari Balakrishnan. Shenango: Achieving high CPU efficiency for
latency-sensitive datacenter workloads. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19), pages
361–378, Boston, MA, February 2019. USENIX Association.

[46] Soyeon Park, Sangho Lee, Wen Xu, HyunGon Moon, and Taesoo Kim.
libmpk: Software abstraction for intel memory protection keys (intel
MPK). In 2019 USENIX Annual Technical Conference (USENIX ATC
19), pages 241–254, Renton, WA, July 2019. USENIX Association.

[47] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos,
Arvind Krishnamurthy, Thomas Anderson, and Timothy Roscoe. Ar-
rakis: The operating system is the control plane. In 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
14), pages 1–16, Broomfield, CO, October 2014. USENIX Association.

[48] George Prekas, Marios Kogias, and Edouard Bugnion. ZygOS: Achiev-
ing low tail latency for microsecond-scale networked tasks. In Proceed-
ings of the 26th Symposium on Operating Systems Principles, SOSP ’17,
page 325–341, New York, NY, USA, 2017. Association for Computing
Machinery.

[49] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ouster-
hout. Arachne: Core-Aware thread management. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18), pages 145–160, Carlsbad, CA, October 2018. USENIX Associa-
tion.

[50] Rust Team. async/.await Primer. In Asynchronous Programming in
Rust, 2023.

[51] Korakit Seemakhupt, Brent E. Stephens, Samira Khan, Sihang Liu,
Hassan Wassel, Soheil Hassas Yeganeh, Alex C. Snoeren, Arvind Kr-
ishnamurthy, David E. Culler, and Henry M. Levy. A cloud-scale
characterization of remote procedure calls. In Proceedings of the 29th
Symposium on Operating Systems Principles, SOSP ’23, page 498–514,
New York, NY, USA, 2023. Association for Computing Machinery.

[52] Shumpei Shiina, Shintaro Iwasaki, Kenjiro Taura, and Pavan Balaji.
Lightweight preemptive user-level threads. In Proceedings of the 26th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’21, page 374–388, New York, NY, USA, 2021.
Association for Computing Machinery.

[53] Livio Soares and Michael Stumm. FlexSC: flexible system call sched-
uling with exception-less system calls. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementa-
tion, OSDI’10, page 33–46, USA, 2010. USENIX Association.

[54] I. Stoica and H. Abdel-Wahab. Earliest eligible virtual deadline first:
A flexible and accurate mechanism for proportional share resource
allocation. Technical report, USA, 1995.

[55] Boris Teabe, Vlad Nitu, Alain Tchana, and Daniel Hagimont. The
lock holder and the lock waiter pre-emption problems: nip them in
the bud using informed spinlocks (I-Spinlock). In Proceedings of
the Twelfth European Conference on Computer Systems, EuroSys ’17,
page 286–297, New York, NY, USA, 2017. Association for Computing
Machinery.

[56] The kernel development community. CFS Scheduler. https://www.
kernel.org/doc/html/latest/scheduler/sched-design-CFS.html, 2024.

[57] Rob von Behren, Jeremy Condit, Feng Zhou, George C. Necula, and
Eric Brewer. Capriccio: scalable threads for internet services. In
Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, SOSP ’03, page 268–281, New York, NY, USA, 2003.
Association for Computing Machinery.

[58] Kyle B. Wheeler, Richard C. Murphy, and Douglas Thain. Qthreads:
An API for programming with millions of lightweight threads. In 2008
IEEE International Symposium on Parallel and Distributed Processing,
pages 1–8, 2008.

[59] Adam Wierman and Bert Zwart. Is tail-optimal scheduling possible?
Operations Research, 60(5):1249–1257, 2012.

[60] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk Olynyk, Jacob
Nelson, Omar S. Navarro Leija, Ashlie Martinez, Jing Liu, Anna Korn-
feld Simpson, Sujay Jayakar, Pedro Henrique Penna, Max Demoulin,
Piali Choudhury, and Anirudh Badam. The Demikernel datapath OS
architecture for microsecond-scale datacenter systems. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating Systems Principles,
SOSP ’21, page 195–211, New York, NY, USA, 2021. Association for
Computing Machinery.

15

https://kernel.googlesource.com/pub/scm/linux/kernel/git/mason/schbench/+/refs/tags/v1.0
https://kernel.googlesource.com/pub/scm/linux/kernel/git/mason/schbench/+/refs/tags/v1.0
https://lwn.net/Articles/869140/
https://lwn.net/Articles/869140/
https://rocksdb.org
https://rocksdb.org
https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html
https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html

	Abstract
	1 Introduction
	2 Motivation
	2.1 User-Space Scheduling Frameworks
	2.2 Challenges in User-Space Scheduling
	2.3 Limitations of Existing Work
	2.4 Design Goals

	3 Design
	3.1 Design Overview
	3.2 User-Space Preemption
	3.3 Scheduling Threads Across Applications
	3.4 General Scheduling Operations
	3.5 Integration with User-Space I/O Frameworks

	4 Implementation
	4.1 Skyloft LibOS
	4.2 Skyloft Kernel Module

	5 Evaluation
	5.1 User-Space Timer Interrupts
	5.2 Synthetic Workload Comparison
	5.3 Real-World Applications
	5.4 Microbenchmarks

	6 Discussion
	7 Related Works
	8 Conclusion
	References

