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Abstract—Nowadays, it is a rapidly rising demand yet challeng-
ing issue to run large-scale applications on shared infrastructures
such as data centers and clouds with low execution latency
and high resource utilization. This paper reports our experience
with Swift, a system capable of efficiently running real-time and
interactive data processing jobs at cloud scale. Taking directed
acyclic graph (DAG) as the job model, Swift achieves the design
goal by three new mechanisms: 1) fine-grained scheduling that
can efficiently partition a job into graphlets (i.e., sub-graphs)
based on new shuffle heuristics and that does scheduling in the
unit of graphlet, thus avoiding resource fragmentation and waste,
2) adaptive memory-based in-network shuffling that reduces 10
overhead and data transfer time by doing shuffle in memory and
allowing jobs to select the most efficient way to fulfill shuffling,
and 3) lightweight fault tolerance and recovery that only prolong
the whole job execution time slightly with the help of timely
failure detection and fine-grained failure recovery. Experimental
results show that Swift can achieve an average speedup of 2.11 x
on TPC-H, and 14.18x on Terasort when compared with Spark.
Swift has been deployed in production, supporting as many
as 140,000 executors and processing millions of jobs per day.
Experiments with production traces show that Swift outperforms
JetScope and Bubble Execution by 2.44x and 1.23x respectively.

I. INTRODUCTION
A. Motivation

It is a lasting effort in the past decades to facilitate efficient
processing of terabytes or even petabytes of data. As a result,
many data-parallel computing models and frameworks have
been put forward, including MapReduce [13], Dryad [27],
Lusail [3], S4 [36], Storm [40], Hero [30], Spark [51], Pregel
[32], PowerGraph [21], ProbeSim [31], Lux [29], Petuum [45],
Mxnet [9], TensorFlow [2], Ray [35], Fractal [17], G-thinker
[46], to name but just a few. Nowadays new changes are
happening, bringing additional challenges to large-scale data
processing. First, computing is increasingly done on shared
infrastructures such as data centers and clouds. Second, the
demand for real-time and interactive data analytics is surging
as a response to the tough economic climate — reduced “time-
to-insight” usually means competitive advantage in the market.

Running large-scale applications on shared infrastructures
like clouds is challenging for the following reasons. First, ap-
plication scheduling is in general an NP-hard problem with no
polynomial solution. It is hard to develop a low-overhead ap-
proximate solution at cloud scale even using simple strategies,
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for many factors (e.g, the needed resources types, resource
scale, the amount of applications under consideration) are
involved and the scheduling goals (e.g., maximizing resource
utilization and minimizing response time) are conflicting.
For example, MaxCompute [10], a fully cloud-hosted data
warehouse solution and service developed and run by Alibaba
to support data warehouse and business intelligence (BI)
analysis, web log analysis, transaction analysis of e-commerce
sites, customer behavior analysis, and so on, involves not
only terabytes (TB) or petabytes (PB) level data storage,
but also computation and network (for data dissemination)
across data centers. Each day, millions of jobs are processed,
with the job running time ranging from seconds to hours or
even days [47]. Second, workload usually changes from time
to time. Moreover, various workloads on shared computing
infrastructures may interfere with each other, making things
even worse. Third, failures become common as computing
scale increases. Handling failures introduces extra overhead
and hurts performance.

Existing work to deal with the challenges can be roughly
divided into two categories, namely resource-centered one and
task-centered one. Resource-centered systems such as Mesos
[25], Hadoop YARN [41], Fuxi [56], Apollo [8], Borg [42],
and Hydra [12] work at the resources management level,
trying to improve resource utilization by reallocating idle
resources across applications. Task-centered systems such as
Qincy [28], DRF [18], Sparrow [38], Paragon [14], Quasar
[15], Tarcil [16], Firmament [20], Graphene [23], CARBYNE
[22] and YARN-H/Tez-H [55] work at the job scheduling
level, trying to improve application performance by effective
and efficient scheduling (e.g., reducing interference between
co-located workloads), accelerating the decision process, and
incremental scheduling and problem-specific optimizations.

Though the above systems have improved resource utiliza-
tion and ensured better application performance, but they are
far from perfect to meet the need of real-time or interactive
processing. For example, the overhead of job scheduling is still
high as pointed out in [38], and the task launching overhead
could not be omitted. In addition, due to the tough economy,
it is imperative nowadays that applications should run with
limited resources. Under such a condition, new systems are
badly needed. Indeed, systems such as JetScope [7], Impala
[33] and Bubble Execution [48] have been developed recently



to support low-latency interactive queries at scale. Though
these systems reduce application latency, resource utilization
is not as high as expected for two reasons. First, resource
fragmentation is inevitable as resources are allocated, freed
and re-allocated from time to time. Second, resource waste
exists for the job consisting of multi-stages [27] because the
allocated executors will keep idle until the required data are
received from the predecessor tasks.

A trivial way to avoid resource waste and resource fragmen-
tation is dividing the query execution graph into some sub-
graphs [48] and scheduling each one respectively. However,
this method still does not touch the root cause of worker idle-
running, that is, worker is launched a long time before input
data arrive. What’s more, the mechanism to dump intermediate
data between sub-graphs to disks and re-run the whole sub-
graph when failure occurs is not performance friendly and
recovery efficient.

B. Contribution

To deal with the above issues, this paper presents Swift,
a reliable and low-latency data processing system at cloud
scale. Swift has been deployed in production at Alibaba as
a long-running service on tens of thousands of machines and
hundreds of thousands of executors, processing more than four
million jobs per day for years. Swift works around in-network
shuffling. It achieves both low latency and high resource
utilization by optimizing and synthesizing the well-known and
best practice techniques in a systematic way, including the
directed acyclic graph (DAG) job model, classical controller-
worker architecture, fine-grained scheduling on the basis of
shuffle-mode-aware job partitioning, and heartbeat-based fail-
ure handling. Our contributions with Swift are as follows.

Fine-grained scheduling with new job partitioning heuris-
tics. Unlike JetScope [7] and Impala [33] that treat a whole
job as the basic unit for scheduling and failure recovery,
Swift presents new shuffle heuristics for logically partitioning
a job DAG into fine-grained graphlets and does scheduling in
the unit of a graphlet (Section III-A), thus avoiding resource
fragmentation and waste.

Adaptive in-network data shuffling. In favor of the idea
that data shuffling matters to performance especially for
data-intensive applications, Swift defines several best practice
memory-based in-network data shuffling schemes and presents
a mechanism for the system to select the best one dynamically
at runtime (Section III-B). Therefore, the costly inter-task data
transfer time is effectively shortened.

Lightweight fault tolerance and recovery. Bearing in mind
that failures come with cost and may harm job performance
significantly, Swift improves heartbeat-based detection with
machine health monitoring (Section IV-A), making failure
detection timely and low overhead. In addition, it provides
fine-grained failure recovery on the graphlet basis (Section
IV-B), making failure handling effective and efficient.

The rest of this paper is organized as follows. Section II
gives an overview of Swift. Section III details how Swift
achieves low latency through fine-grained scheduling and
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adaptive in-network shuffling. Section IV explains the fine-
grained failure recovery mechanism. Section V shows the
experimental results. Section VI reviews the related work and
the paper ends in Section VII with some conclusions.

II. AN OVERVIEW OF SWIFT
A. Job Description

Since SQL (Structured Query Language) is pervasive, Swift
provides a SQL-like programming language as JetScope [7]
does for users to describe their jobs in a familiar and efficient
way. Fig. 1 shows how TCP-H Q9 is described in Swift
language. Such a job is then converted to the DAG job model
as shown in Fig. 4(a) by a parser or compiler program, which
may exert some optimizations meanwhile. Since the full details
of Swift programming language and the way to parsing it
are out of the scope of this paper, we will stop here. In the
following, we will assume that users submit jobs directly in
DAG for the sake of simplicity. One thing to be pointed out
here is that Swift supports all typical SQL operators such as
sort merge join, sort aggregate, window, order by, and
SO on.

select nation, o_year, sum(amount) as sum_profit
from (
select n_name as nation, substr(o_orderdate, 1, 4) as o_year,
|_extendedprice * (1 - |_discount) - ps_supplycost * |_quantity as amount
from tpch_supplier s
Jjoin tpch_lineitem | on s.s_suppkey = |.I_suppkey
Jjoin tpch_partsupp ps on ps.ps_suppkey = |.|_suppkey and ps.ps_partkey = |I_partke:
Jjoin tpch_part p on p.p_partkey = .|_partkey
Join tpch_orders o on 0.0_orderkey = |.|_orderkey
Join tpch_nation n on s.s_nationkey = n.n_nationkey
where p_name like '%green’"’

)

group by nation, o_year
order by nation, o_year desc
limit 999999;

Fig. 1. TPC-H Q9 described in Swift programming language. After parsing,
it is converted to the DAG model shown in Fig. 4(a).

B. Architecture

Swift adopts the classical controller-worker architecture as
JetScope [7] does to avoid two-round resource allocation of
resource-centered systems [25], [41], [56], [42]. In this way,
the scheduling latency is reduced. The detailed architecture is
shown in Fig. 2, where Swift Admin acts as the controller and
the shadow controller mechanism is enabled to avoid a single
point of failure.

Swift Admin fulfills resource management and scheduling
via Executor Manager and Resource Scheduler, job manage-
ment and scheduling via Job Scheduler and DAG Scheduler.
In order to reduce job scheduling latency further, Swift Admin
runs in an event-driven way, with Event Processor handling
various status- and resource-related events. It is the duty
of DAG Scheduler to acquire resources from the Resource
Scheduler and schedule tasks to the available Swift Executors.

The worker machine provides computing resources for tasks
in terms of Swift Executors, which are pre-launched when
Swift starts. After launched, the status of Swift Executor is
reported to Swift Admin and then different actions are taken
by the Executor Manager — the status will be cached in
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Fig. 2. The architecture of Swift. It follows the classical controller-worker architecture, with Swift Admin as the controller and Swift Executor as the worker.
Swift works in an event-driven manner. To avoid a single point of failure, shadow controller mechanism is also supported as most distributed systems do
today. Usually, there are dozens or hundreds of Swift Executors running on each machine in the real world.

the Cache Status of the Job Scheduler if the executor has
a task to run and otherwise, it will be added to the resource
pool maintained by the Resource Scheduler. On each worker
machine, there is also one Swift Cache Worker, which is
introduced to solve the TCP incast problem [54] associated
with large jobs and will be detailed in Section III-B.

C. System Workflow

The workflow of Swift can be illustrated from the perspec-
tive of a job lifecycle. In Swift, a job lifecycle starts when
the Client submits a job. We suppose the job is admitted.
Otherwise, the job lifecycle ends. For each job admitted, the
Job Scheduler will create a Job Monitor for the following job
scheduling and status maintenance. The first step taken by the
Job Scheduler after creating the Job Monitor is to analyze the
dependency between stages and partition the job DAG into
graphlets according to the inter-stage shuffle mode (Section
III-A). Afterwards, the obtained graphlets are handed to the
DAG Scheduler, which then registers resource requirements
of graphlets with the Resource Scheduler. Each resource
requirement is recorded as a request item (i.e., Reqltem in
the figure) by the Resource Scheduler.

For each resource request received, the Resource Scheduler
allocates all or part of the required resources according to
the property of the graphlet as well as data locality and
machine load. For more details, please refer to Section III-A.
After resources are assigned, the related information is cached
into the Job Scheduler, which then generates execution plan
for each task accordingly. All plans are cached in the Plan
Handler of Executor Manager and sent to certain Swift
Executors for execution by a dedicated thread pool. When the
execution completes, Swift Admin is notified. Afterwards, the
Executor Manager records the status, and notifies the DAG
Scheduler and the Job Scheduler for further scheduling or job
status update.
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The process keeps running in an event-driven way mediated
by the Event Processor until the job completes. To keep the
scheduling latency low, the Event Processor handles resource
assignment events in high priority and fulfills event handling
in a multi-threading way. When failures occur during the job
execution, the Failure Handler of Job Scheduler determines
the tasks to re-run according to the failure type and the fine-
grained failure recovery strategy (Section IV). After that, the
DAG Scheduler is notified to register resource requirement of
these tasks to re-run with the Resource Scheduler. Finally, the
tasks are re-executed.

III. Low LATENCY OPTIMIZATIONS

Swift achieves the goal of low latency and high performance
through fine-grained scheduling and adaptive in-network shuf-
fling. Details are as follows.

A. Fine-Grained Scheduling Based on Job Partitioning

Gang Scheduling, which schedules all tasks of a job at the
same time to achieve higher concurrency, has been adopted
by many interactive systems, such as JetScope [7] and Impala
[33] for the low scheduling latency it can achieve. However,
gang scheduling is not resource efficient for two reasons.

First, no task will be scheduled until all resources required
by the job are allocated, resulting in resource fragmentation.
Resource fragmentation means waste, for the idle resources
cannot be put into use for running the task.

Second, for jobs consisting of multiple stages [27], there
are dependencies among different stages. A typical example
is the MapReduce job [13], where the Reduce task cannot be
executed until all Map tasks finish sorting data and the data
shuffle procedure completes. For these jobs, after tasks are
gang scheduled to the executors, the resources will keep idle
until the required data are received from the predecessor tasks,
which obviously results in resources waste.
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Fig. 3. The IdleRatio of 4 product clusters when gang scheduling is adopted.
Obviously, gang scheduling results in resources waste.

To measure the degree of resources waste, we intro-
duce a new metric called IdleRatio, which is defined as

. data_arrive — dtask_start
IdleRatio = = =

5 where Ttask_start is
. task_finish — I;fask_start
the time when the task plan arrives at the executor, Tyatq_arrive

is the time when the input data are ready, and Tiqsk_finish
is the task complete time. We measure the IdleRatio of jobs
(the character of which is described in Section V-B) on
4 production clusters with gang scheduling, with the result
shown in Fig. 3. Each cluster consists of over 10,000 machines,
and the result shown is the average value got via the widely-
used four quartile method [26]. We can see from the figure
that the average IdleRatio of 4 clusters is 3.81%, 13.15%,
14.45%, and 14.92% respectively. Obviously, a large quantity
of resources have been wasted in gang scheduling.

To deal with the problem and improve resource utilization,
Swift presents a fine-grained scheduling strategy that partitions
the whole job DAG into several sub-graphs (called graphlet
here) according to our new heuristics about inter-stage shuf-
fling and does scheduling in the unit of graphlet.

1) Job Partitioning with New Shuffle Heuristics: Shuffle is
common in the real world. For example, 97 out of 100 TPC-DS
queries include at least 1 operation such as “order by”, “group
by” or “join”, which may incur shuffle operation between
tasks within a job. According to [53], over 50% of Spark jobs
executed daily at Facebook have at least 1 shuffle operation.
Shuffle matters to performance due to all-to-all transfer of
growing size of data. It is in this sense that Swift works around
shuffle for job partitioning and failure recovery.

To partition a job, we examine the shuffle mode of each edge
in the job DAG. If it involves some global SORT operations
(e.g., StreamedAggregate, Mergedoin, Window, SortBy,
and M ergeSort), data produced by the previous stages cannot
be streamlined to the successor stage for continuous processing
due to the operation semantics. The edge in such a case is
called a barrier edge. Otherwise, it is called a pipeline edge.
Barrier edges provide new heuristics for job partitioning. The
detailed partitioning algorithm is shown in Algorithm 1 and
Algorithm 2. It starts with one starting stage in the job DAG
(Algorithm 1) and traverses the whole job DAG recursively
(Algorithm 2) until the job DAG becomes empty. For each
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given stage, it is first added to the given sub-graph (i.e.,
graphlet) and then both its incoming and outgoing edges are
checked. For stages associated with the pipeline edges, be they
the successors or the predecessors, they will be removed from
the job DAG and added to the same graphlet. Compared with
the job partitioning scheme of Bubble Execution [48], our
scheme is more straightforward and of lower complexity.

Algorithm 1 Shuffle-Mode-Aware Job Partitioning
Input:  Job_DAG;

Output: Graphlet_List;

1: while Job_DAG not empty do

2: Get and remove the first stage from Job_DAG in topology order
3: Construct a new graphlet

4: Call scanAndAddStages(Job_DAG, stage, graphlet)

5: Add graphlet to Graphlet_List

6: end while

Algorithm 2 scanAndAddStages

Input: Job_DAG, stage, graphlet;
1: Add stage to graphlet
2: for each output of stage do

3: if (output stage in Job_DAG) and (output edge is pipeline) then
4: Remove output stage from Job_DAG

5: Call scanAndAddStages(Job_DAG, output stage, graphlet)
6: end if

7: end for

8: for each input of stage do

9: if (input stage in Job_DAG) and (input edge is pipeline) then
10: Remove input stage from Job_DAG

11: Call scanAndAddStages(Job_DAG, input stage, graphlet)
12: end if

13: end for

Fig. 4(a) illustrates how the job DAG of TPC-H Q9 is
partitioned, where the barrier and pipeline edges are drawn
in red and green respectively. As shown in Fig. 4(b), J4, J6,
and J10 contain M ergeSort operator, thus the edges between
J4 and J6, J6 and R10, J10 and R11 are barrier edges, and
the whole Q9 DAG is partitioned into 4 graphlets: graphlet 1
consisting of M1, M2, M3, and J4; graphlet 2 consisting of
M5 and J6; graphlet 3 consisting of M7, M8, R9, and J10;
and graphlet 4 consisting of R11 and R12.

2) Fine-Grained Scheduling of Graphlets: After a job DAG
is partitioned into graphlets, the DAG Scheduler submits
them one by one to the Resource Scheduler. When assigning
resources, both data locality and machine load are considered.
Data locality is considered to accelerate data loading, which
is time-consuming especially for data-intensive applications
[49], [52], [24], [43]. Machine load is considered to avoid
scheduling flock, that is, too many tasks are scheduled to
a small number of machines in favor of data locality while
the other machines are idle, which obviously leads to poor
performance. For tasks without locality preference, the most
free machine is chosen. For each graphlet received, gang
scheduling is used to ensure low latency and high concurrency.
Since graphlet is of finer granularity than the whole job DAG,
the problem of resource fragmentation is alleviated at least to
some extent.

The submission order of graphlets is determined by the
dependencies among them. A graphlet can be submitted only
when all its input data are ready. Take the TPC-H Q9 DAG



M1

956 tasks.

M2

220tasks

M3

3tasks

M5

403 tasks.

M7

220 task

/7

Graphlet: 3
Trigger Stage: J10

M8

20task

Graphlet: 1 (bebiEiT
Trigger Stage: J4

Graphlet: 2
Trigger Stage: J6

m Graphlet: 4
M1 M2 M1~M8
i l
= =
i [ snutviie |
| tl
R11
!
1
M5 Shufflewrite
[ |
ShuffleRead
— |
l l
AdhocSink
e | — |

(b) Operators of Each Stage

Fig. 4. An example of job partitioning with TPC-H Q9, where 4 graphlets
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shown in Fig. 4(a) as an example. Graphlet 1 is submitted
first, and graphlet 2 can be submitted only after J4 finishes,
and then comes graphlet 3 after J6 completes. Graphlet 4 is
submitted last after J10 completes. Please note such an order
is somewhat conservative to graphlet 3, for tasks M7 and M8
can be executed concurrently with graphlet 2. We do so to
avoid the resources waste caused by J10 waiting for the input
data from J6.

B. Adaptive Memory-based In-Network Shuffling

Data shuffling matters to performance, for the involved
operations such as TCP connections establishment and data
transfer are all time-consuming. For a network shuffle of M
predecessor tasks and N successor tasks, at least MxN TCP
connections should be established. To reduce the overhead
of establishing so many TCP connections and alleviate the
TCP incast problem [54], file-based shuffling is put forward.
A typical example can be found in Dryad [27]. Neverthe-
less, file-based shuffling is still time-consuming and can be
improved [53]. In Swift, we present an adaptive memory-
based in-network shuffling scheme to optimize performance.
As illustrated in Fig. 5, we define three types of shuffle, namely
Direct Shuffle, Local Shuffle, and Remote Shuffle for jobs
to select dynamically at runtime.

Direct Shuffle sends shuffle data directly from the prede-
cessor tasks to the successor tasks. It has the advantage of

2391

the least memory copy times. However, it suffers from the
overhead of too many (M xN) TCP connections establishment,
the TCP incast problem [54], and a lot of TCP retransmissions
when large quantity of tasks are involved.

Local Shuffle directly writes/reads shuffle data to/from the
Cache Worker on the local machine. Data shuffle is fulfilled
by the Cache Workers. As mentioned in Section III-A, there
are two types of edges between stages, namely the barrier
edge, and the pipeline edge. Different steps are taken for them.
For the pipeline edge, both writer and reader tasks are gang
scheduled. The Cache Worker on the writer side sends shuffle
data to the destination Cache Worker as soon as they are ready.
After the destination Cache Worker receives the desired shuffle
data, the reader tasks are notified to do further processing.
As for the barrier edge, since the writer task and the reader
task belong to different graphlets, it is most likely the reader
task has not been scheduled when the writer task is finished.
Therefore, the shuffle data is only written to the writer Cache
Worker, and the destination Cache Worker will pull the data
proactively after the reader task is put into running.

Suppose there are M predecessor and N successor tasks
running on Y machines, the number of TCP connections
needed between Swift Executors and the Cache Workers is
M + N + C% at most, where CZ = ﬁ Since each
machine can run tens of Executors, Y is much smaller than
M and N. Thus, Local Shuffle has the least TCP connections
between tasks. But, compared with Direct Shuffle, it introduces
two additional times of memory copy.

Remote Shuffle writes shuffle data to the Cache Worker of
local machine and the successor tasks pull data directly from
the Cache Worker. The number of TCP connections needed is
at most M + N xY', which is less than M x N of Direct Shuffle
and greater than M+ N+C?% of Local Shuffle. Compared with
Direct Shuffle and Local Shuffle, Remote Shuffle has modest
memory copy times.

To achieve the best performance, Swift selects the right
shuffle type adaptively according to the shuffle size, namely
the number of edges between all source stage tasks and the
sink ones. Direct Shuffle is used for small-sized shuffle, Local
Shuffle for huge-sized shuffle, and Remote Shuffle for middle-
sized shuffle. In our production settings, the threshold of
shuffle size is set to 10,000 and 90,000 respectively.

Memory Management of the Cache Worker Local Shuffle
and Remote Shuffle write shuffle data to the Cache Workers
and delete them to release memory after they have been
consumed by all successor tasks. Since most jobs in Swift are
short and small (refer to Section V-B for more details), shuffle
data only exists in the Cache Worker for a short time and the
space could be reused by other jobs in a timely fashion. In
the case that memory shortage does happen, which is only of
the probability less than 1% in our production clusters, LRU
(Least Recently Used) algorithm [37] is used to swap old data
to disks. Since this can be done in large data chunk, it would
not hurt performance greatly.
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IV. LIGHTWEIGHT FAILURE HANDLING

Failures are common in large scale distributed systems. Pro-
viding favorable fault tolerance and efficient failure recovery
with low overhead is crucial for low latency data processing
system. The most straightforward way to handle failures is to
re-run the whole job. Given that failures could occur at any
time on any machine, this way would waste a lot of resources
— for the already complete tasks should be re-executed —
and make the job execution time unnecessary long. Therefore,
fine-grained and low-overhead fault tolerance and recovery
mechanisms are badly needed. Swift achieves the purpose on
the basis of job partition. Below are the details.

A. Timely Failure Detection

Detecting failures timely is a prerequisite for fast failure
recovery. However, it is really challenging because numerous
factors are involved in large scale distributed systems. For
example, network congestion, machine crashes, and hardware
exceptions usually do not lead to application level failures
immediately. But when such failures are detected, harm to
performance has been made. To deal with the problem, Swift
presents the following three lightweight mechanisms.

First, Swift Admin keeps tracking all the Executor processes
in a lazy and passive way — it is up to the Executor itself
to report its status once the state changes. When an Executor
process is launched, it reports its PID (process ID), TCP port
and so on to Swift Admin. Once the process is re-launched due
to some failures, its status is also reported to Swift Admin. In
this way, Swift Admin could know process restart and initiate
the failure handling process immediately in low overhead.

Second, Swift maintains periodic heartbeats between Admin
and Executors. The heartbeat interval is vital in large scale
systems. A larger interval means a longer delay in failure
detection, which may cause greater harm. A shorter interval,
on the other hand, means a heavier burden of Swift Admin and
may harm system scalability. As a compromise, two strategies
are exploited by Swift: i) a heartbeat manager is deployed on
each machine as a proxy of all Executors on that machine to
communicate with Swift Admin. In this way, the burden of
Swift Admin is eased, and ii) heartbeat interval is carefully
selected according to the cluster scale (Ss, 10s, 15s for small,
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(a) idempotent task case

(b) non-idempotent task case

Fig. 6. Two cases of failure recovery within a graphlet.

medium, large cluster respectively) so that no great harm can
be done before the failure is detected.

Third, Swift Admin also monitors the health of each ma-
chine. Once a machine failure is detected, all Executors on that
machine are revoked by Swift Admin and if there are tasks
running on those Executors, a failure recovery process will be
triggered immediately. When a machine is found unhealthy
(e.g., a large quantity of tasks on the machine failed in a
short time), Swift Admin will mark it as read-only and stop
scheduling new tasks to it. Executors on read-only machines
will keep running until no more task is left unfinished in them.
Then, the resources are revoked.

B. Fine-Grained Failure Recovery

Swift leverages a fine-grained failure recovery mechanism
that only re-runs the failed tasks to minimize the impact of
failure handling on job performance as much as possible. The
mechanism works on the basis of graphlet described in Section
III-A. According to the position where a failure occurs, three
cases are distinguished as follows.

1) Intra-Graphlet Failure Recovery: In this case, the failed
task, its predecessors and successors are all within the same
graphlet. Fig. 6(a) shows such an example, where the failed
task is T4, its predecessors are T1 and T2, and its successors
are T6 and T7. According to the scheduling mechanism
described in Section III-A, these tasks are gang scheduled.
In the real production, there are two types of task, namely the
idempotent one and the non-idempotent one. Corresponding
to them, different steps are taken for failure recovery.

a) Idempotent Task Recovery: For idempotent tasks, their
output data sets as well as the sequence of data within a set
remain unchanged no matter how many times they run. For
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these tasks, the data sent to the successors could still be used
even if they fail. Therefore, the recovery steps are simple. Take
the failure of T4 in Fig. 6(a) as an example and suppose T4 has
been executed. If T6 and T7 have received the desired data
from T4, no step will be taken. Otherwise, a new instance
T4' is initialized to replace T4. Meanwhile, T1 and T2 are
notified to update their output channels to T4' and re-send the
shuffle data to T4' without re-running. Afterward, T4' is run
to regenerate the data required by T6 and T7.

b) Non-ldempotent Task Recovery: Unlike idempotent
tasks, both the output data set and the sequence of data within
a set may be different when non-idempotent tasks run many
times. When failure occurs with these tasks, the data could
not be reused even if they have flowed into the successors of
depth. To recover such a failure, we need to re-run the failed
task as well as all its successors that have been executed. Fig.
6(b) shows such an example, where the failed task T4 and its
successors T6 and T7 are re-launched as T4', T6', and T7'.

2) Input Failure Recovery: Input failure occurs across
graphlets, where the failed task and its predecessors belong
to different graphlets. Fig. 7(a) shows an example, where the
failed task T4 and its predecessors T1 and T2 belong to two
different graphlets. According to Section III-A, <T1, T4> and
<T2, T4> are barrier edges, and T1 and T2 only write shuffle
data to the local Cache Worker for T4 to fetch. When T4 is
re-launched as T4', there is no need to notify T1 and T2 to
update their output channels, for T4' will fetch the desired data
directly from their Cache Workers. As for the output channels
of T4, they will be handled following the routine of Intra-
Graphlet Failure Recovery.

3) Output Failure Recovery: Output failure also occurs
across graphlets, but the failed task and its successors belong
to different graphlets. Fig. 7(b) shows an example, where the
failed task T4 and its successors T6 and T7 belong to two dif-
ferent graphlets. For this case, the input channels are updated
following the routine of Intra-Graphlet Failure Recovery, and
no step is needed for the output channels because T4' only
writes shuffle data to the local Cache Worker.

C. Avoiding Useless Failure Recovery

There are some other failures caused by the application
logic, for example, memory access violation and access to
non-existent files or tables. For these failures, re-running
the corresponding tasks does not help, but wastes resources.
Therefore, once such failures occur, we just report them to the
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Fig. 8. The characteristics of jobs in the production traces.

Job Monitor and no further recovery step is taken in order to
save resources.

V. EVALUATION

Swift has been thoroughly evaluated against various work-
loads using different settings in terms of performance, resource
utilization, fault tolerance, and scalability.

A. Platform and Settings

Two clusters running Red Hat 4.1.2-50 are used for Swift
evaluation. One cluster has 100 nodes, each of which is
equipped with two 16-core Xeon E5-2682 v4 CPUs (40MB
Cache, 2.5GHz), 192GB DDR3 RAM, 12 7TB SATA hard
disks. The other cluster has 2000 nodes, each of which has two
6-core Xeon E5-2630 CPUs (15MB Cache, 2.3GHz), 96GB
DDR3 RAM, 13 2TB SATA hard disks. All the nodes of the
two clusters are connected via a 10GB Ethernet NIC (Network
Interface Controller).

B. Workloads

The workloads used for Swift evaluation include TPC-H and
some traces collected from production clusters with tens of
thousands of machines. The traces involve 2000 jobs, with the
job characteristics shown in Fig. 8(a) and Fig. 8(b). Obviously,
most jobs are short and small: the average job run time is 30s,
more than 90% of the jobs could complete in 120s, and more
than 80% of the jobs consist of no more than 80 tasks and 4
stages. Each day, there are more than 4 million jobs running on
Swift. To better illustrate the real performance of a production
cluster, we also run some jobs as background workloads in all
the evaluations.

C. Execution Performance

We compare Swift with Spark, one of the most popular
open-source systems, with the results discussed below.

1) Performance against TPC-H: We run TPC-H jobs with
1TB data to evaluate Swift performance and compare the
result with that of Spark SQL 2.4.6. For fairness, Spark
SQL is carefully tuned, with Parquet data format supported
and cost-based table analyzing enabled. For Spark SQL, only
the job running time is counted whereas the query analysis
time is omitted. The cluster of 100 nodes is used for TPC-
H evaluation, with the result shown in Fig. 9(a). For all the
queries, Swift gets a total speedup of 2.11x over Spark.
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Fig. 9. Performance comparison of Swift and Spark against TPC-H jobs,
where L, SR, SW and P mean task launching, shuffle reading, shuffle writing,
and record processing phase respectively. Particularly, SR for M1 is table
scanning, and SW for R12 is adhoc sinking.

TABLE I
COMPARISON OF SWIFT AND SPARK WITH TERASORT JOBS
Job Size Spark (s) Swift (s) Speedup
250%x250 61 19 3.07
500 %500 103 26 3.96
1000 x 1000 233 33 7.06
1500 < 1500 539 38 14.18

For both Spark and Swift jobs, each task execution could
be subdivided into 4 phases, i.e., task launching that covers
package downloading and executor launching, data shuffle
writing, data shuffle reading, and record processing. We further
investigate the performance of Spark and Swift on Q9 and
show the detailed 4-phase execution time of critical tasks in
Fig. 9(b). We can see that the benefit mainly comes from the
following two mechanisms of Swift: 1) long running executors,
which avoids the overhead of packages downloading and
spares executors launching time — for Spark, launching all
the critical tasks takes over 71s, and 2) adaptive in-network
shuffling, which takes 8.92s for shuffle read and 9.61s for
shuffle write, while saving and loading shuffle data to/from
disks in Spark take 137.8s and 133.9s, respectively.

2) Comparison of Swift and Spark with Terasort Jobs:
Table 1 shows the result, where the cluster of 100 nodes is
used, the job size M xN (M, N = 250, 500, 1000, 1500)
means the job has M Terasort Map tasks and N Terasort
Reduce tasks, and each Terasort Map task processes 200MB
data. The job execution time on Spark increases as the job
size increases. When the job size is larger than 1000x 1000,
the job execution time shoots up. In contrast, the job execution
time on Swift only increases slightly as the job size increases.
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Fig. 10. Statistics of the number of running Executors when JetScope, Bubble
Execution, and Swift are deployed on the 100-nodes cluster respectively.
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Fig. 11. Normalized execution latency of 2,000 jobs with JetScope, Bubble
Execution, and Swift on the 100-nodes cluster.

The larger the job size, the greater the speedup that can
be achieved. The result also implies that Swift has better
efficiency than Spark, for the same cluster is used.

D. Resource Utilization and Latency

We implement JetScope and Bubble Execution ourselves
and compare them with Swift in terms of resource utilization
and job latency by replaying the production job traces on the
100-nodes cluster. Fig. 10 and Fig. 11 show the results from
different perspectives. Since Swift Executor is the basic unit
to run tasks, the number of running Executors is used as an
indicator of resource utilization.

Since jobs in JetScope are treated as a whole for scheduling,
no job will be scheduled until there are enough free resources
for it. Therefore, for a large job submitted, it will wait for
a long time before all the required resources are available.
Obviously, the CPU cycles of the free executors are wasted
during the time. The fluctuation of the number of running
Executors in Fig. 10 indicates bad resources utilization — the
process is full of waiting and waste. As a result, as shown in
Fig. 11, it is of the largest job latency — more than 60% of
jobs are with a latency 2x greater than that of Swift.

2394



irect o Remote

cal

I

Medium
Shuffle Edge Size

[
1.4
|

W
N
[wllw]

on Time

1.2

ecuti

0.8

0.6

0.4

malized Average Job Ex

0.2

Nor

Small Large

Fig. 12. The normalized average job execution time when Direct Shuffle,
Local Shuffle, and Remote Shuffle are deployed respectively.

As for Swift and Bubble Execution [48], since both of them
can do scheduling in finer granularity (graphlet in Swift and
bubble in Bubble Execution), free executors can be timely
scheduled and put into use. Therefore, resources are highly
utilized and resource fragmentation is slight. We can see
from Fig. 10 that the number of running executors of Bubble
Execution is almost the same as that of Swift. So does the
job latency — as shown in Fig. 11, nearly 90% of jobs have
a latency 1.5x less than that of Swift. As shown in Fig. 10,
Swift and Bubble Execution can finish all jobs in 240s and
296s respectively, imposing a speedup of 2.44x and 1.98x
over JetScope.

Swift performs better than Bubble Execution because: 1)
Bubble Execution partitions a job DAG according to the
shuffle data size and suffers from high partitioning overhead
and long-time waiting — the assigned executors keep idle until
the required data are ready, and 2) the adaptive in-network
shuffling mechanism employed by Swift is more efficient than
the disk-based shuffling mechanism of Bubble Execution.

E. The Benefit of Adaptive In-Network Shuffling

We evaluate the benefit of adaptive in-network shuffling
by replaying a set of production job traces on the cluster of
2,000 nodes. The chosen jobs are divided into three categories
according to the shuffle edge size, that is, small-shuffle-sized,
medium-shuffle-sized, and large-shuffle-sized. The job traces
are replayed three times with Direct Shuffle, Local Shuffle, and
Remote Shuffle respectively. To better illustrate the result, for
each category, the average job run time obtained with Direct
Shuffle is normalized to 1.

As shown in Fig. 12, for small-shuffle-sized jobs, using
Direct Shuffle can get the best average execution time, whereas
using Local Shuffle and Remote Shuffle can slow down job
execution by 4% and 3% respectively. For medium-shuffle-
sized jobs, using Remote Shuffle can get the best average
execution time, whereas using Direct Shuffle and Local Shuffle
can slow down job execution by 25% and 3.8% respectively.
For large-shuffle-sized jobs, using Local Shuffle can get the
best average execution time, whereas using Direct Shuffle and
Remote Shuffle can slow down job execution by 108.3% and
47.9% respectively. The reasons are given below.

For small-shuffle-sized jobs, only a small number of TCP
connections are needed for data shuffling and the overhead
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of connection estabnlishment is negligible. Remote Shuffle
and Local Shuffle slow down job execution mainly because
of the additional memory copies introduced. As the shuffle
edge size increases, more TCP connections are needed and the
system spends more time in constructing connections. That’s
why Direct Shuffle performs poor. An investigation into the
execution log shows that: 1) estabnlishing a TCP connection
would take hundreds of milliseconds in a congested network,
and for a task with hundreds of successors, it usually takes
dozens of seconds to build all the TCP connections when
Direct Shuffle is used; 2) TCP retransmission rate increases
as the number of connections, and for large-shuffle-sized jobs,
Direct Shuffle can incur a rate as high as 3%, whereas Local
Shuffle and Remote Shuffle only incur a rate less than 0.02%.

F. Fault Tolerance

We use TPC-H Q13, which is detailed in Fig. 13, to evaluate
the fault tolerance capability of Swift and compare it with job
restart policy. We manually inject failures into different tasks
and measure the failure recovery time and the impact of failure
recovery on job execution time. The result is shown in Fig. 14,
where the non-failure job execution time is used as a baseline
(normalized to 100) and 5 failures are injected at time 20, 40,
60, 80, and 100 to M2, J3, R4, RS, and R6 respectively. At
each run, only one failure is injected.

As shown in Fig. 14, there is no slowdown of the job
execution time for Swift when the first failure occurs at time
20. The reason is that the failed task (M2 here) has sent its
output to the following task (i.e., J3). However, the failure at
time 40 causes a significant job slowdown. The reason behind
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is that the failed task J3 is on the critical job path and most
importantly, of the large input data size. For all the failures, the
fine-grained failure recovery mechanism of Swift only slows
down the job by less than 10%, which is much lower than the
case of job restart recovery.

Failures in the real world are diverse and more complicated
[19], [6]. They can occur at any time during job execution.
As shown in Fig. 8(a), about 50% failures occur within
30s and 90% within 200s. To show how Swift performs
in dealing with the real-world failures, we redo the failure
recovery experiment. First, we replay the traces without failure
injection as the baseline and normalize the end-to-end job
execution time to 100. Then, we replay the traces with failures
regenerated according to the production traces and measure
the end-to-end jobs execution time with job restart policy and
with the fine-grained failure recovery mechanism shipped by
Swift respectively. Fig. 15 shows the result, where the values
are obtained with the widely-used four quartile method [26].
Failure recovery by job restart slows down job execution by
45% on average, whereas the fine-grained failure recovery
mechanism of Swift only incurs an average slowdown of 5%.

G. Scalability

In this section, we measure the scalability of Swift with the
cluster of 2,000 nodes. The workload is generated according
to the production traces. We replay the same workload several
times with different numbers of Swift Executors. The end-to-
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end run time with 10,000 Swift Executors is normalized as
the baseline. Fig. 16 shows the result, where the ideal result is
also shown. From the figure we can see that Swift can achieve
near-linear scalability when the number of Executors increases
from 10,000 to 140,000.

VI. RELATED WORK

Many factors are involved for a distributed system like
Swift. Below lists some most related work.

Resource utilization and QoS. At the resources level,
Mesos [25], Hadoop YARN [41], Fuxi [56], and Borg [42]
are developed and deployed to improve resource utilization by
reallocating idle resources across applications while keeping
QoS (Quality of Service). At the tasks level, Qincy [28], DRF
[18], Sparrow [38], Paragon [14], Quasar [15], Tarcil [16],
Firmament [20], Graphene [23], CARBYNE [22], YARN-
H/Tez-H and so on are proposed to improve application
performance by effective and efficient scheduling (e.g., re-
ducing interference between co-located workloads), decision
process acceleration, incremental scheduling and problem-
specific optimizations.

In-memory computing. Many data processing systems
such as Spark [51], MapReduce Online [11], Scuba [4],
Dremel [34], and Shark [44] employ memory to manipulate
various data so as to eliminate the IO bottleneck and shorten
job execution. Swift also favors this idea to shuffle data
in memory. Moreover, several in-network shuffle types are
distinguished for adaptive selection based on shuffle edge size.
In this way, the data transfer time between tasks is reduced.

Job scheduling. JetScope [7], Impala [33] and Bubble Exe-
cution [48] use gang scheduling to achieve higher concurrency.
But as aforementioned, gang scheduling suffers from resources
fragmentation because the whole job is treated as a basic
unit in scheduling. Bubble Execution alleviates the problem
by dividing a job graph into buddles (i.e., sub-graphs) and
scheduling them respectively. However, resources waste still
exists, for executors in Bubble Execution are launched long
before the input data arrive.

DAG partitioning. Breaking a job DAG into stages and
scheduling them independently have already been supported
by systems like Spark [51] and Sparrow [38]. However,
existing DAG partition metrics are simple and only work in
specific scenarios. For example, there is no shuffle dependency
for tasks of the same stage in Spark, but data dependency
does exist between graphlets in Swift. Data shuffling in Spark
is disk-based and of poor performance, whereas the adaptive
in-memory shuffling scheme presented by Swift is resource-
efficient and high-performance.

Failure detection. Timely failure detection is crucial in
large-scale distributed systems. Heartbeat-based mechanisms
have been widely used by many distributed frameworks [41],
[56], [42], [7]. Swift takes a step further to introduce heartbeat
manager, machine health monitor and the read-only mecha-
nism to ease the detection burden and to save the executed
cycles as much as possible.



Fault tolerance. F1 [39] uses coarse-grained fault tolerance
which is simple but not efficient. Spark [51] achieves fault
tolerance by leveraging RDD-based lineage re-computation
[50]. JetScope [7] provides support for fined-grained fault
tolerance via recomputing the failed tasks. MillWheel [5]
and Flink [1] use checkpoint to achieve exactly-once fault
tolerance. However, failures in the real world are more com-
plicated and difficult to handle even with a small graph. Swift
presents mechanisms covering both inter/intra-graphlet failures
and idempotent/non-idempotent tasks. It can guarantee both
performance and data validity.

VII. CONCLUSION

We have presented Swift, a reliable and low-latency large-
scale data processing system in production. Working around
shuffling, Swift adopts an event-driven controller-worker ar-
chitecture to achieve both low latency and high resource
utilization by leveraging fine-grained job scheduling on the
basis of shuffle-aware job partitioning, adaptive memory-based
in-network shuffling, and lightweight fine-grained failure re-
covery. The experimental results show that, compared with
Spark, Swift can achieve an average speedup of 2.11x on
TPC-H and 14.18 x on Terasort jobs. Swift has been deployed
in production on tens of thousands of machines, supporting
as many as 140,000 executors and processing millions of jobs
per day. Experiments with production traces show that Swift
could achieve a speedup of 2.44x over JetScope and 1.23 %
over Bubble Execution.
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