
Task Optimization Based on CPU Pipeline Technique in Multicore System

Bo Wang,Yongwei Wu, Weimin Zheng
Tsinghua National Laboratory for Information Science and Technology
Department of Computer Science and Technology, Tsinghua University

Beijing, China
Email: gawain102000@163.com, {wuyw, zwm-dcs}@tsinghua.edu.cn

Abstract—Currently, multi-core system is prevalent in desk-
top, laptop or servers. The web proxy as a server provider
can save network traffic overhead and shorten communication
time. Especially with the fast development of wireless Internet
accessing, the web proxy will take more important role. In
this case, we research the web proxy behavior and exploit
parallel subtasks deeply. Based on this, we propose CP (CPU
Pipeline) technique to build parallel tasks in multi-core system.
The result shows that our scheme can efficiently improve
throughput for handling the incoming requests per second and
take full advantage of the computing capacity provided by
multicore system.

Keywords-multicore system; task optimization; pipeline;

I. INTRODUCTION

People have put forward the multi-core concept since
early 90’s. Even at that time, the single-core processor still
occupies the most of that business. The design for Linux
system adopts time-sharing mechanism to run much applica-
tion software concurrently. Each application is allocated one
given time-sliced by the process management which duties
on putting one process into running queue or idle queue. Due
that the time slice is calculated on the level of millisecond
the users often can smoothly run several applications not
conscious of any delay resulting from the short stop of
an application. Linux timer is triggered at the internals of
several milliseconds which can result in the execution of
series of services which include process management. The
parameter for time slice takes very important role in the
whole concurrent design. If this value is set too long to
switch to another application, users often trend to loss their
patients.

Therefore, parallel execution must take full account of
many factors which can affect the whole rational design.
From early 90’s, Due that the constant development for
the hardware manufacturing process such as wafer incision,
people can improve computing capacity and processor fre-
quency to regulate time slice at a wide scope. Currently, the
frequency for single-processor nearly closes its limitation. In
this case, multi-core system becomes prevalent which avoids
that limitation and begins toward parallel direction. In multi-
core system, the process management and process queue
management at best guarantee the fair balance load among
different processors. Graph below shows how to migrate

one process from one processor to another. The important
parameter for this is the time-out value for a timer which can
trigger process queue management to decide if the process
migration is happened.

Figure 1. Linux scheduling in multi-core system.

The system performance shows some differences when
we make the process or thread as our execution unit. In this
paper, in order to focus on our research, we neglect their
difference and use both of them during our experiments.

From above, we give enough description about low layer
unit supporting parallel task execution, including hardware
such as multi-core architecture and software such as process
scheduler. Our parallel task developing is based on this
and our application scenario is the web proxy service. The
web proxy provides the service which intercepts the HTTP
request from a client and after complex handling, returns
the reply to this client. Its behavior is similar to the Apache
web server to some extent, except that it does not produce
the page content what the client really wants.

Why do we put forward one concrete application scenario
with web proxy server? First, parallel computing has no
general solution for each application. We can not smoothly

2011 Fifth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing

978-0-7695-4372-7/11 $26.00 © 2011 IEEE

DOI 10.1109/IMIS.2011.55

168

2011 Fifth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing

978-0-7695-4372-7/11 $26.00 © 2011 IEEE

DOI 10.1109/IMIS.2011.55

143

write parallel program like sequential program due that
we must reasonably partition one big task into several
parts which can keep multi-core load-balanced running.
We must take account of parallelism between the partial
parallel execution and the whole system. Even if you can
keep favorable partial parallel execution for two-level loop
statement or one subtask, maybe it only contributes few
to the whole application. Second, web proxy server can
stand for types of applications including Apache, Firefox
or some network routing applications. These applications
play an improving role to our social progress. Third, our
research focuses on how to analyze the relation among
different modules, including logging, accessing and filtering
mechanism, cache management, header parsing, translation
and transcoding. Traditional programming style emphasizes
the internal structure clarity and whole logical correction,
therefore, modular design is imported by much application
software to guarantee the successful running. Meanwhile, the
disadvantage of this style pays little attention to the subtask
parallelism. Fourth, many compute-bound tasks exist in this
application, including picture data transcoding, javascript file
translation, header information parsing. In future, due that
the wireless surfing on mobile phone which is considered
as a weak computing platform, becomes more prevalent, we
can predict that more computing tasks including request an-
alyzing and CSS parsing will be transferred to the powerful
computing platform like web service provider or web proxy.

Many methods have been presented to support the parallel
computing on the multi-core system. OpenMP[1] can excel-
lently decompose a complex loop statement which exists in
a function into many subtasks which can be simultaneously
executed on different processors. TBB[2] belongs to one kind
of task-oriented programming language which builds parallel
tasks to improve application efficiency. Users can focus
on how to rationally partition complex relations into many
parallel execution units without manually managing subtask
switching. Erlang[3] language highlights concurrency, real-
time, robustness, distribution and portability during appli-
cation design which makes erlang prevalent in multi-core
system.

From above description, we introduce CPU pipeline, give
some parallel execution existing in web proxy and compare
some similar places between pipeline technique and our
proposed scheme. Our contribution in this paper can be
summarized as below:

1) This scheme is based on one practical application
and aims to acquire the favorable parallel execution
through analyzing the whole architecture.

2) This scheme provides great guides for some similar
application including some web services.

3) Each request from client or reply from server can
be considered as one pipeline, and some intermediate
states can be written to ”memory” which can keep
next session valid.

4) Comparing with other methods, our proposed method
(CP) shows favorable scalability.

II. RELATED WORK

Recently, more work about the scalar architecture has
been researched in order to improve web server performance
including FTP transferring, network routing and network
monitoring etc. they commonly aim to make the application
parallel execution in order to acquire the performance boost
no matter what the hardware or software is.

Mahdi proposes a high-performance network monitoring
software architecture. His application background is network
package monitoring. He partitions the network package
workflow into three stages: accepting, flow reassembly and
transmission. And he builds the parallel task on the multi-
core system, which shows that great improvement has
been acquired[4]. Danhua Guo proposes a high scalable
parallelized L7-filter system architecture with affinity-based
scheduling on a multi-core system. He treated the whole
processing as this: accepting the incoming packages, pre-
processing, scheduling, matching and transmitting[5]. Even
if more parallel schemes are given, it lacks full analy-
sis for the task complexity. Katerina Argyraki studies the
soft router scalability with two challenges: first, the per-
package processing capability of each server must scale
with O(R); second, the aggregate switching capability of
the server cluster must scale with O (NR). Based on this,
he proposes a solution: a cluster-based architecture that
uses an interconnect commodity server platforms to build
software routers that are both incrementaly scalable and
fully programmable[6]. Furthermore, when we take account
of the order of the incoming data stream for some network
applications, how to handle them one by one in multi-core
system can affect the system performance to a great extent.

Mauricio Marin designs high-performance priority queues
for the parallel crawlers. The processing of network crawler
can operate on one same URL which wastes more computing
and storage resources. His team solves this through the
synchronization management for the URLs queues. They
propose efficient and scalable strategies which consider
intra-node multi-core multithreading on an inter-nodes dis-
tributed memory environment, including efficient use of
secondary environment[7]. Based on this, more multi-core
synchronization algorithms have been put forward over these
years in support of the parallel application. Some research
work focuses on the system bottleneck and thinks of all
the ways to overcome this and make this part execute
parallel[8][9][10][11][12].

We can compare our work with the above research from
several sides as follows:

1) We assume that the low layer such as operating system
scheduler, TCP/IP stack or communication architec-
ture (PCIE) or transferring pattern (EDMA) works

169144

Figure 2. CP architecture

well. Some studies modify these to acquire better
performance improving.

2) Some research only partitions the whole application
into several simple subtasks, in fact, one common
application involves many subtasks to handle including
compute-bound, transfer-bound. We take full account
of the possible details and decompose these into many
subtasks which support our proposed CP technique.

III. CP TECHNIQUE

As far as web proxy system is concerned, it handles the
incoming requests. These requests can be categorized into
several types: HTTP, HTTPS, FTP, ICP, and HTCP. Each
type of request will flow along different paths: some paths
go through long stages and some short.

In figure 2, we partition the whole processing into three
stages: request/reply fetch and parsing; package processing;
parallel committing. In the first stage, the incoming package
may belong to one kind of request from user, reply from
server or inquiry from cache peers. The web proxy will filter
some contents according to the filter tables. The correspond-
ing filter items include source IP, destination IP, maximal
connection number, accessing port, user information, HTTP
status and accessing time etc. Based on this, it can deter-
mine the next action. If satisfying one of filter items, web
proxy generates the corresponding web content, returns it
to the user and deletes the socket connection[13][14][15]. The
following figure gives the whole processing:

In figure 3, if the request or reply passes the filter strategy,
it can be forwarded to the next stage; otherwise the system
will generate the wrong page content to the user which
notices that some bad things have happened. Proxy also
possesses memory space like program instruction. But it
only records some status information which can be refer-
enced by the next handling. In our design, we partition the
whole processing from the incoming request or reply to the
sending-out package into several independent parts. In order
to reach this, some intermediate information must be written

Figure 3. request or reply fetches processing.

into the memory or file to be accessed by the next request
or reply.

Figure 4. comparisons between traditional method and CP.

In figure 4, we compare the traditional processing with
our CP method. We take the request or reply as one
instruction which keeps considerable independency. Our
execution includes five steps: (1) accepting request or reply,
parsing the data package and filtering some things; (2) cache

170145

modifying; (3) creating new socket or processing the data
compression, etc; (4) memories recording; (5) sending out
data. Comparing with the traditional method, we have moved
the information record function into the memory modify
stage. Therefore, the function for each subtask keeps distinct
and is more prone to be partitioned into parallel execution
units. Figure 5 describes the memory stage when request
instruction and reply instruction execute, respectively.

When one instruction has been handled, some interme-
diate states must be written to the memory which can be
referenced by the next request or reply. Take an example,
when proxy accepts one reply through its listening socket,
after series of checking, it misses the cache, therefore, it
creates another child process, creating one socket through
which it keeps connections with the server. The socket can
not be deleted until completing the data transferring from
the server.

Time-complexity and space-complexity are two factors to
judge the algorithm efficiency. Due to our analyzing based
on multi-core system whose memory is commonly more
than 8GB.This figure is commonly appropriate for most
application including web proxy, web server and browser.
We will give the concrete time-bound analysis for subtasks
in following subsections.

After this, we can focus on the subtask decomposition
which aims to keep them equal execution. According to the
compute-bound feature of the subtask, we produce a certain
number of processes in one subtask which can be executed
simultaneously. Rather than fully analyzing every task, we
can focus on the major tasks which can affect the whole
system performance to a great extent.

Figure 5. Memory operations for request and reply instruction.

From above description, we limit each subtask to a single
function which may be executed simultaneously. Next, we
will discuss some details from the whole task partition and
each independent subtask partition. Here we assume the
minimal execution cost is 1 for all the subtasks.

IV. EXPERIMENT

Based on section III, we will go on series of experiments
to illustrate CP method and build each subtask according
to its characteristic. The past research shows that the better
performance improvement can be reached through building
more parallel tasks than more threads. According to this, on
multi-core system, we focus on the parallel task building
rather than thread building.

For each subtask, we will build one pipeline[16]including
several stages with different functions and each stage pos-
sesses certain execution time. As far as the compute-bound
pipeline is concerned, the pipeline acceleration is limited by
the number of stages and the longest execution time among
all the stages. Some other details need be careful too during
building pipeline and parallel tasks. For an example, when a
task scale is very small, it is not worth building parallel tasks.
The difficulty is how to find the correct boundary point from
which we can begin to build the parallel tasks. Furthermore,
when many subtasks including different compute-bound
stages concurrently exist on the multi-core system, the tough
problem is to adopt the suitable partition which can make the
performance reach the maximum. We design different types
of experiments to present these problems and propose their
corresponding suggestions. Here again, we partition tasks
into two parts: the parallel and not. For the latter, if it needs
long time to execute, we can consider other schemes such
as putting this on the powerful computing platform.

In order to acquire the satisfied speedup, we need analyze
each subtask in detail. Some subtasks such as socketbuild or
writing back frequently access the hardware device through
corresponding drivers. From our experiments, parallel exe-
cution for these instructions can not improve the speedup
due to some latency on these low speed devices.

The traditional Moore’s law can not accurately reflect
the speedup of the multi-core application program due to
many complex factors including thread overhead, context
switching[17][18]. One of proposed speedup function by Erlin
Yao[19], is:

Speedupsymmetric(f, n, r) =
1

1−f
perf(r) +

fr
perf(f)n

(1)

In this formula, the word symmetric points out that
the multi-core processor is symmetric. The word f is one
fraction of parallel execution time without any scheduling
overhead. n is the number of processor. They assume that
architects can expand the resources of r base core equivalents
(BCE) to create a powerful core with sequential performance
perf(r)(1 < perf(f) < r). According to this cost model,
they give three types of architecture of multi-core chips:
symmetric, asymmetric and dynamic. In our experiment, in
order to simplify the problem complexity, we only consider
the symmetric platform and give the symmetric formula, cor-
respondingly. Our experiment platform is 8-core processor.
Some parameters are below:

171146

Operating system: Linux el5xen
CPU: SMP Intel(R) Xeon(R) 8 CPU E5310 @ 1.60GHz
Cache size on each core: 4096KB
Memory size: 8GB

A. String comparison cost under certain number of pipeline.

Figure 6. Comparison between execution time and CPU usage.

CPU usage is one important index for testing soft
developing[20][21][22][23]. In figure 6, we compare string
matching time and CPU usage when the number of pipeline
varies from 1 to 11,100. From the CPU usage curve, when
the number of pipeline reaches more than 8, the CPU usage
keeps 100% and the speedup stays for 800%. When the
number of pipeline is 1, the multi-core system keeps low
CPU usage due to few subtasks existing in the scheduling
queue. With the improvement of pipeline number, CPU
usage boosts, correspondingly. When the pipeline number
is super than 8, the speedup keeps level. The main reason
is that no matter when the task scheduler acquires one task
from the queue, the fast task production can always satisfy
the request for task consuming.

This experiment result also reflects that it does not gain
for multi-core system if we constantly produce short and
vast tasks.

B. When we allot different workload for each subtask, the
execution time varies, correspondingly.

In figure 7, we allot each subtask certain workload ac-
cording to our proposed scheme in figure 7. This workload
does not involve any system call. In this case, we can
better view the relation between execution efficiency and
subtask workload. The variable value for x axis decides
each subtask’s workload. In this figure, variable i is varied
from 30000 to 3000000 which decides the whole computing
cost. In order to test our series of experiments, we have
developed several scripts written by Perl to produce our
required data. With the increment of i, the curve gradient
also boosts, correspondingly. This reflects that when the
workload linearly improves the execution time linearly incre-
ments, correspondingly. Furthermore, the improvement for

Figure 7. execution time and workload.

the gradient value means that the more the whole execution
cost is, the less the speedup of the whole pipeline is.

This result comes from the unbalance of the whole
pipeline. When the longest subtask spends long time com-
puting, other parts of subtasks have finished their work in
advance. In this case, the multi-core system can keep idle
for short interval which can reduce the parallel execution
efficiency.

In spite of the low efficiency for unbalance pipeline, some
designs must adopt this scheme which can keep each stage
executing concrete task. In this case, from our experiment
and analysis, several ways can be selectable in order to keep
system high efficient.

1) Producing more subtasks which can be scheduled
when some time-consuming tasks terminate.

2) Trying to reduce the gap between the longest subtask
and shortest subtask.

C. i varies from 100000 to 700000, and the number of
pipeline varies from 1 to 10.

Figure 8. computing cost in pipeline system.

Figure 8 mainly tests the point where the speedup can
reach the maximum. This figure mainly focuses on the point
where the whole irregular pipeline can reach the maximal

172147

speedup when we add up to the computing cost step by
step. From this figure, when the number of pipeline is more
than 8, the speedup begins to keep level. This reflects that
in 8-core system, 8-way parallel execution can reach fairly
speedup. When we build more than 8 parallel threads, due to
the limitation on the number of the total processors, many
threads are waiting in the scheduling queue. Furthermore,
if vast tasks exist in the waiting queue, no matter which
task scheduling algorithm is applied in this system, it need
traverse the whole queue to pick out the appropriate task
to be scheduled in ready time. This will result in slightly
overhead due to the long task queue. So the velocity for
producing the tasks should be equal or slightly greater than
the velocity for task termination.

In figure 8,we can also see that when the number of
pipeline improves from 1 to 10, the execution curve becomes
more and more flat. This reflects that when the total number
of produced tasks is small, the real processor can execute
them at a high throughput. Especially when the number
changes from 1 to 2, the execution time nearly descends
to the half time. In this case, only about 4 real processors
can finish all the produced tasks. With the increase of the
produced tasks, the real processor must execute more tasks
simultaneously and this can also result in the decrease of
the speedup.

Generally speaking, four parameters take the important
role in the whole execution: the task producing velocity, task
execution cost, the processor basic frequency and the context
switching. When the task execution is compute-bound, the
overhead resulted from the context switching can be ne-
glected. When the basic frequency is high, in the limited
time, more tasks can be finished and the high speedup is
acquired. When the execution cost is high, the tasks in the
ready queue often need long time to be scheduled. During
this interval, if other tasks have been frequently scheduled
many times, this means that this time-consuming task should
be degraded into several parallel slices in order to improve
the speedup of the whole application.

D. concurrent operation and mixture operation

For web proxy, Apache server or other application soft-
ware, some operations involve concurrent actions including
same file writing, information debugging, data accessing.
Generally speaking, two ways can reach this: first, merging
all the concurrent operations into one task; second, scattering
them to different tasks which can reduce the concurrent
accessing probability.

In figure 9, we can see that when the pipeline number
increases, the concurrent accessing efficiency becomes low.
The main reason is that more threads compete for the same
data resources. The thread which successfully enters the data
resource can block the other threads. This can also result
in the less CPU usage than the pure computing without
any concurrent operation. When the pure computing mixes

Figure 9. comparison among pure computing, concurrent accessing and
mixture operation.

with the concurrent operation, the speedup becomes not as
high as the pure computing. From the real application, the
mixture operation is very common including Apache, Squid.
Even if the concurrent operation can reduce the pipeline
speedup, we can select some alternative methods to improve
concurrent efficiency. First, one task includes more pure
computing and less concurrent operations. Second, pipeline
should contain fewer subtasks. These ways can keep the
resource competition the lowest probability.

E. Summary

Series of experiments have processed to illustrate our
proposed CP pipeline. From our analysis, CP can show high
efficient no matter how the total number of request changes.
We accurately test the pipeline characteristic based on dif-
ferent parameters including pipeline stage, irregular/regular
pipeline, minimal subtask cost, concurrent operation, in-
struction feature. We regulate our parameter value according
to our experiment result.

Our design is based on web proxy which represents
some types of applications including web server, browser.
We believe in future web proxy technique can express
more important role, especially in wireless scope. Parallel
design based on multi-core platform can greatly improve
the processing efficiency.

V. FUTURE WORK

We have processed current work almost for one year,
more challenging is waiting in front of us including pipeline
execution minimal model, switching/pipeline cost/multi-core
number analysis model[24][25][26][27]. Even if the web proxy
design can stand for some common applications, we still
need consider some slight difference among them in order to
give the perfect concurrent execution in multi-core system.

Resource competition is another important factor which
can greatly affect the concurrent execution in multi-core
system. Through execution migration, we can reduce this
bad affect for parallel execution to some extent. However,

173148

the better way for solving this is optimizing the multi-
core concurrent algorithm. Currently, even if people have
proposed different multi-core algorithm for parallel list,
vector, hash, these algorithms often shows bad efficient.
Through enough tests, we find that some are even worse than
corresponding sequential version. In future work, we should
connect the concrete application with the multi-core system,
further focus on the reduction for the resource competition.

VI. CONCLUSION

In this paper, we deeply research the web proxy architec-
ture and based on this, we partition the whole application
into several different tasks according to their feature. Each
task includes several subtasks from 2 to 6. These subtasks
constitute one complete pipeline. In multi-core system, the
scheduling strategy can concurrently execute several tasks
which come from different pipeline. According to pipeline
function feature, each subtask includes certain operations
including resource competition, system call, and instruction
characteristic. In each case, we process the corresponding
experiment to show its performance. Meanwhile, we also
compare CP with the other pipeline which possesses dif-
ferent feature. The result shows that our CP show good
performance no matter how the pipeline changes its relative
parameter.

VII. ACKNOWLEDGEMENT

This Work is supported by Natural Science Foundation
of China (60803121, 60773145, 60911130371, 90812001,
60963005), National High-Tech R&D (863) Program of
China (2009AA01A130, 2006AA01A101, 2006AA01A108,
2006AA01A111, 2006AA01A117) and MOE-Intel Founda-
tion.

REFERENCES

[1] http://openmp.org/wp/

[2] http://www.threadingbuildingblocks.org/

[3] http://www.erlang.org/doc/

[4] Dashtbozorgi, M. and M.A. Azgomi. A scalable multi-core
aware software architecture for high-performance network
monitoring. in Proceedings of the 2nd international conference
on Security of information and networks. 2009. North Cyprus,
Turkey : ACM.

[5] Guo, D., et al. A scalable multithreaded L7-filter design for
multi-core servers. in Proceedings of the 4th ACM/IEEE Sym-
posium on Architectures for Networking and Communications
Systems. 2008. San Jose, California : ACM.

[6] Argyraki, K., et al. Can software routers scale?. in Proceedings
of the ACM workshop on Programmable routers for extensible
services of tomorrow. 2008. Seattle, WA, USA: ACM.

[7] Marin, M., R. Paredes and C. Bonacic. High-performance
priority queues for parallel crawlers. in Proceeding of the 10th
ACM workshop on Web information and data management.
2008. Napa Valley, California, USA : ACM.

[8] Veal, B. and A. Foong. Performance scalability of a multi-core
web server. in Proceedings of the 3rd ACM/IEEE Symposium
on Architecture for networking and communications systems.
2007. Orlando, Florida, USA : ACM.Fastforward for efficient
pipeline parallelism.

[9] Gotsman, A., et al. Proving that non-blocking algorithms don’t
block. in Proceedings of the 36th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages.
2009. Savannah, GA, USA : ACM.Adaptive work stealing with
parallelism feedback.

[10] William N. Scherer, I., D. Lea and M.L. Scott, Scalable
synchronous queues. Commun. ACM , 2009. 52 (5): p. 100-
111.

[11] Souders, S., High Performance Web Sites. Queue , 2008. 6
(6): p. 30-37.

[12] Vicen, et al. Improving Web Server Performance Through
Main Memory Compression. in Proceedings of the 2008 14th
IEEE International Conference on Parallel and Distributed
Systems. 2008: IEEE Computer Society.

[13] Taylor, D.E. and J.S. Turner, ClassBench: a packet classifi-
cation benchmark. IEEE/ACM Trans. Netw. , 2007. 15 (3): p.
499-511.

[14] Cohen, E., B. Krishnamurthy and J. Rexford. Improving end-
to-end performance of the Web using server volumes and proxy
filters. in Proceedings of the ACM SIGCOMM ’98 conference
on Applications, technologies, architectures, and protocols for
computer communication. 1998. Vancouver, British Columbia,
Canada: ACM.

[15] Yates, A., S. Schoenmackers and O. Etzioni. Detecting parser
errors using web-based semantic filters. in Proceedings of the
2006 Conference on Empirical Methods in Natural Language
Processing. 2006. Sydney, Australia : Association for Compu-
tational Linguistics.

[16] Garcia, P. and H.F. Korth. Pipelined hash-join on multi-
threaded architectures. in Proceedings of the 3rd international
workshop on Data management on new hardware. 2007. Bei-
jing, China : ACM.

[17] DeBenedictis, E.P. Will Moore’s Law Be Sufficient. in Pro-
ceedings of the 2004 ACM/IEEE conference on Supercomput-
ing. 2004: IEEE Computer Society.

[18] Cong, J., et al. Moore’s Law: another casualty of the financial
meltdown?. in Proceedings of the 46th Annual Design Automa-
tion Conference. 2009. San Francisco, California: ACM.

[19] Yao, E., et al. , Extending Amdahl’s law in the multicore era.
SIGMETRICS Perform. Eval. Rev. , 2009. 37 (2): p. 24-26.

[20] Park, I., B. Falsafi and T.N. Vijaykumar. Implicitly-
multithreaded processors. in Proceedings of the 30th annual
international symposium on Computer architecture. 2003. San
Diego, California : ACM.

174149

[21] Tabata, T., et al. Controlling CPU Usage for Processes with
Execution Resource for Mitigating CPU DoS Attack. in Pro-
ceedings of the 2007 International Conference on Multimedia
and Ubiquitous Engineering. 2007: IEEE Computer Society.

[22] Jaros and A. Lipowski, Minimizing CPU usage in soft shadow
volumes algorithm. MG;V, 2006. 15 (3): p. 493-503.

[23] Dumitrescu, C. and I. Foster. Usage Policy-Based CPU
Sharing in Virtual Organizations. in Proceedings of the 5th
IEEE/ACM International Workshop on Grid Computing. 2004:
IEEE Computer Society.

[24] Bunescu, R.C. Learning with probabilistic features for im-
proved pipeline models. in Proceedings of the Conference
on Empirical Methods in Natural Language Processing. 2008.
Honolulu, Hawaii : Association for Computational Linguistics.

[25] Liao, W., et al. , Performance Evaluation of a Parallel Pipeline
Computational Model for Space-Time Adaptive Processing. J.
Supercomput. , 5. 31 (2): p. 137-160.

[26] Kuntraruk, J., W.M. Pottenger and A.M. Ross, Application
Resource Requirement Estimation in a Parallel-Pipeline Model
of Execution. IEEE Trans. Parallel Distrib. Syst.

[27] Roth, D. and K. Small. Active learning for pipeline models.
in Proceedings of the 23rd national conference on Artificial
intelligence - Volume 2. 2008. Chicago, Illinois : AAAI Press.

175150

