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Abstract—Temporal graphs attach time information to edges
and are commonly used for implementing time-critical applica-
tions that can not be effectively processed by traditional static
and dynamic graph processing engines. State-of-the-art solutions
that target temporal path problems remain ad-hoc and often
suboptimal. A unified and high-performance solution that could
efficiently process general temporal path problems via a universal
optimization strategy and relieve practitioners from heavy opti-
mization efforts is in urgent demand. In this paper, we make two
key observations: (1) temporal path problems can be described
as topological-optimum problems and solved by a universal
single scan execution model; and (2) data redundancy commonly
occurs in the native format of the transformed temporal graphs,
which is unnecessary for information propagation and can be
eliminated for better memory utilization and execution efficiency.
Based on these core insights, we propose TEGRAPH, the first
general-purpose temporal graph computing engine to provide a
unified optimization strategy and execution model for general
temporal path problems and their applications. TEGRAPH not
only presents temporal information-aware graph representation
that naturally fits temporal graphs but also offers general system-
level supports such as out-of-core execution. Extensive evaluation
reveals that TEGRAPH can achieve significant speedups over the
state-of-the-art designs with up to two orders of magnitude (241×)
with the throughput of two hundred million edges per second.

Index Terms—Graph algorithm, temporal graphs.

I. INTRODUCTION

Temporal graphs, which label the edges with time intervals,

can provide additional capabilities to describe time-critical

applications that can not be otherwise captured by traditional

static graph computing engines [1]–[14]. In reality, many

important applications are based on temporal graphs [15]–

[31] such as aviation networks [32], e-commerce [33], and

realtime epidemiology analysis (e.g., Influenza and COVID-19

outbreaks [34]). Social media graphs [35], [36] are also with a

period of friending as the edge labels. Additionally, in the era

of deep learning-based big data analytics, effectively extracting

essential information from large and complex temporal graphs

becomes increasingly critical for everyday life [33], [36]–[39].

Despite its importance, existing research has mainly focused
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on non-temporal static graphs, while some have considered dy-

namic graphs as a sequence of updates to non-temporal graphs

but without bounding time constraints [40]–[42]. Fig. 1(a)

shows a temporal graph of an aviation network. Each edge is

attached with a time interval. The time interval (1, 2) attached

to the edge from a to b indicates that there is a flight taking

off from a at time 1 and arriving at b at time 2.

Most applications using or represented by temporal graph

focus on solving the general temporal path problems. A

temporal path is a legal path under time constraints. For

example, to find a temporal path in an aviation network,

the arrival time must be earlier than the departure time at

each transit airport. There are several common temporal path

problems such as reachability, e.g., whether there is a temporal

path between two airports; fastest path, e.g., how to reach

the destination as fast as possible; and shortest path, e.g.,

how to reach the destination with the lowest total cost. These

path problems are the fundamental building blocks for many

important applications.

Two main approaches have been proposed in the literature

to address temporal path problems. The traditional method

stores the temporal graph into an adjacency list format with

each neighbor also including its temporal information. During

processing, one can directly apply static graph execution algo-

rithms, e.g., Dijkstra’s algorithm [43] or Bellman-Ford [44],

but with extra consideration of time constraints [45]. This

is referred as static execution [32], [35], [46]–[51], which

would experience redundant data access and computations

(Sec. II-C). A more promising approach is to transform the

original temporal graph to an equivalent but larger static graph

by expanding each vertex to multiple ones according to the

timing information. The topological structure of the trans-

formed graph contains all the necessary timing constraints.

The transformed graph is then processed using state-of-the-

art static graph processing models. This method is referred as

transformation-based execution. Fig. 1(c) illustrates a trans-

formation example.

State-of-the-art temporal graph processing techniques face

three fundamental challenges, namely computation, space, and

bandwidth. Among them, the computation challenge is the

primary obstacle to achieving the full potential of efficient

processing. Static execution incurs both high computation

complexity and bandwidth overhead in order to handle the ad-

ditional time information. Transformation-based execution, on

the other hand, drastically simplifies computation via process-
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Fig. 1: An aviation map example.

ing transformed graphs (DAGs) but suffers from high latency

for relying on the traditional iterative processing models. We

have demonstrated that there lacks a universal optimization

strategy for achieving the optimal performance across different

path problems (Sec. II-D). For space, the graph transformation

in transformation-based execution, although convenient, does

suffer from the graph amplification problem which incurs

large memory and disk I/O overhead. Finally, for bandwidth,

state-of-the-art designs resort to temporal information associ-

ated with static graph representations, such as edge list and

adjacency list, to represent temporal graphs. This results in

enormous bandwidth waste for temporal graph analytics which

is I/O intensive.

This paper attempts to provide a fast, space and band-

width efficient solution for processing general temporal path

problems and their applications. By treating this problem as

a complete end-to-end optimization, we identify two key

insights to support our overall solution. First, we find that

temporal path problems essentially aim to solve so-called

topological-optimum problems, in which each prefix (or a

subpath) of the final result path is also the solution for the

sub-problem. Therefore, we prove that once a temporal graph

is transformed into a static DAG, temporal path problems be-

come topological-optimum. By leveraging this unique feature,

we propose a universal single scan execution (Sec. III-B)

for fast processing the general path problems on temporal

graphs by treating them as topological-optimum problems on

the transformed DAGs. It replaces the generic iterative-based

graph execution models which require continuously read edges

and computing until convergence. Second, we investigate the

graph transformation phase prior to the execution and observe

that, due to the inherent nature of temporal graphs, their

transformed DAGs may contain a large volume of redundancy

that is unnecessary for information propagation.

Based on this insight, we propose a novel transformation

model named hyper-method (Sec. III-D) to address the graph

amplification challenge and further accelerate the execution

phase via effectively condensing the transformed graph with-

out any information loss. It dramatically reduces the execution

workload and memory footprint to encourage in-memory

processing with reduced disk I/O. Finally, we represent the

temporal graph with a novel time-aware graph format (Sec.

IV) which splits the same vertex that appears at dissimilar

time stamps as different vertices to further avoid unnecessary

data loads during processing.

With these three novel designs as the core, we propose TE-

GRAPH, the first general-purpose temporal graph computing

engine to provide a unified execution model for efficiently pro-

cessing general temporal path problems and their applications.

In addition to the core optimizations, TEGRAPH provides a

quantitative analysis to understand the benefits of TEGRAPH.

Extensive evaluation on real-world graphs has shown that

TEGRAPH can achieve significant speedups over the state-of-

the-art systems, up to two orders of magnitude (241×) with the

throughput of two hundred million edges per second. It also

performs better at larger datasets. In addition, TEGRAPH also

saves up to 61% disk space and achieves up to 17× graph

transformation speedup. Finally, we provide the piecewise

breakdown of performance speedups from each proposed

technique, confirming that the overall achieved acceleration

is from a combination of different optimizations.

II. BACKGROUND AND MOTIVATION

A. Notations for Temporal Graph

Different from static graphs, edges in temporal graphs have

time intervals. Let G = (V,E) be a temporal graph, where

V is the vertex set and E is the set of edges. Each edge

e ∈ E is defined as (u, v, s, t), where u, v ∈ V and there

exists an edge from u to v starting at time s and ending

at time t with s, t ∈ R. For a graph with costs, we attach

a weight w to each edge as (u, v, s, t, w). For simplicity,

we assume all the elements are meaningful if s < t. There

may be multiple edges between the same pair of vertices.

We use din[v] and dout[v] to denote the in-degree and out-

degree of v respectively. We use D to denote the maximum

in-degree or out-degree in the graph. Furthermore, a path

P = {v1, v2, .., vn+1} in a temporal graph can also be denoted

as P = e1 · e2 · ...en, where ei = (vi, vi+1, si, ti) and

end(ei) ≤ start(ei+1) , for 1 ≤ i ≤ n. For example, in

Fig. 1(a), one can move from the edge (a, b, 1, 2) to (b, c, 3, 4),
but cannot move from (c, a, 5, 6) to (a, b, 1, 2). A prefix of a

path is called a subpath. For example, P ′ = e1 · e2 · ...ek is

a prefix of P if P = P ′ · ek+1 · ... · en, which can also be

denoted as P = P ′ ∪ {vk+2, vk+3, ..., vn+1}.

In real-world functions, a temporal graph is represented as

an edge stream [32], [33], [52]: it is simply a sequence of

all the edges coming in the order of time that each edge is

created or collected. Edges in temporal graphs are normally

ordered based on their starting time. The edge stream data

representation is a common format for temporal graphs.

579

Authorized licensed use limited to: Tsinghua University. Downloaded on August 15,2022 at 11:57:37 UTC from IEEE Xplore.  Restrictions apply. 



1 2 3 4 5Time Point

L
b

L
c

D
b D

b

D
c D

c

4 updating operations

(a) Static Execution.

1 2 3 4 5Time Point

L
b

L
c

D
b D

b

D
c D

c

3 updating operations

(b) Transformation-based Execution.

1 2 3 4 5Time Point

L
b

L
c

D
b D

b

D
c D

c

2 updating operations

(c) One-Pass.

1 2 3 4 5Time Point

L
b

L
c

D
b D

b

D
c D

c

1 updating operation

(d) TEGRAPH.

Fig. 2: Updating edge (b, c, 3, 4) on Fig. 1(a) in static execution, transformation-based execution, One-Pass, and TEGRAPH.

B. General Temporal Path Problems

Most real-world applications using or represented by tem-

poral graphs focus on solving the temporal path problems,

which are the essential building blocks for many advanced

graph analytics [25], [32], [36], [52], [53]. We list several

most representative temporal path problems as follows [32],

[54], where each problem makes a single-source query. Given

a vertex u ∈ V and a time interval [start, end], the temporal

path problem is to find the temporal path P between the time

interval (i.e., start ≤ start(P ) and end(P ) ≤ end) for each

vertex v ∈ V , where P meets the following conditions.

• Reachability: Reachability from u to v means that

P(u, v) is not empty, where P(u, v) = {P : P is a

temporal path from u to v}.

• Fastest Path: P ∈ P(u, v) is the fastest path between

u and v if duration(P ) = min{duration(P ′) : P ′ ∈
P(u, v)}.

• Shortest Path: P ∈ P(u, v) is the shortest path between

u and v if dist(P ) = min{dist(P ′) : P ′ ∈ P(u, v)}.

• Top K Nearest Neighbors (Top KNN): ∀u ∈ K and

∀v ∈ V/K, score(u) ≤ score(v), then K is the set of

k-nearest neighbors of the vertex x. score(u) is a self-

defined measure function, e.g., the shortest path from x
to u in this paper.

Based on these general temporal path problems, a wide

range of applications can be defined, e.g., betweenness cen-

trality [55], closeness centrality [56], [57], etc.

C. State-of-the-art Solutions

Static Execution: Typically, techniques based on static exe-

cution directly apply traditional static graph execution models

such as Dijkstra’s [43] or Bellman-Ford [44] based methods to

process temporal graphs [32], [35], [47]–[51]. This approach

incurs both high computation complexity and memory access

overhead since an additional time dimension is introduced and

extra procedures are needed for guaranteeing time constraints.

Using shortest path processing as an example, it extends the

shortest path d[u] to a series of d[u][t] to capture the optimal

path to the vertex at time t while applying greedy algorithms.

During each iteration, it needs to compare d[u][t] with the

other time instances of u. Fig. 2(a) demonstrates the updating

function for the edge (b, c, 3, 4) in Fig. 1(a) under static execu-

tion, (b, 2) and (b, 3) will have to individually update vertices

(c, 4) and (c, 5) with total four update operations. This leads to

redundant computations. Further, since static execution stores

neighbors of different temporal information together, expired

neighbors will be loaded, leading to redundant data access.

A recent proposal named One-Pass [32] directly modifies

traditional static graph algorithms to better process temporal

graphs in a single iteration. For each vertex v, One-Pass

maintains a list, i.e., Lv . Each entry of Lv is a (d, t) tuple,

where d is the distance of vertex v from the source vertex

at time t. Here, it requires all the tuples to be sorted by t.
During computation, for each edge (u, v, s, t, w), One-Pass

updates the corresponding tuples in the destination endpoint

v of this edge, i.e., Lv . Particularly, One-Pass needs to find

all the (d, si) tuples in the list Lu, such that si ≤ s, where

u is the source endpoint of this edge. Subsequently, One-Pass

uses these (d, si) tuples to update the (d, t) tuple in Lv . If we

run One-Pass on Fig. 1(a), we arrive at Fig. 2c. It sequentially

scans all edges by the edge stream order. Using edge (b, c, 3, 4)

as an example, when updating this edge, it first searches the list

Lb whose time instance is ≤ 3, then updates the value of the

destination vertex, i.e., (c, 4), in Lc to the resultant distance.

Updating other edges will be the same. Since finding the tuples

in Lu and Lv takes log(D), the time complexity for One-Pass

is O(|E|log(D)). As shown in Table I, the space complexity of

One-Pass on the reachability is O(|E|+ |V |) which stores the

list L of each vertex and graph dataset. For other applications,

the space complexity is O(|E|+2|V |) which needs more space

for storing the range query data structure. As we will discuss

shortly, although One-Pass is faster than the traditional static

execution techniques, it is (i) slower than our single scan

approach which only needs O(|E|), and (ii) requires ad-hoc

optimizations for different temporal path applications.

Transformation-Based Execution: The transformation-

based execution [32], [52], [53], [58], [59] techniques first

transform the original temporal graph to an equivalent but

larger DAG (Directed Acyclic Graph) with timing information

embedded (Fig. 1(c)), and then apply static graph models

to the transformed DAG. Compared to the static execution,

although introducing an additional transformation phase, the

core graph execution is more straightforward without the need

to deal with the additional time dimension. For the actual

graph transformation, each edge will generate two vertices.

For example, edge u → v : (u, v, s, t) will generate two

vertices: (u, s)out (called an out-vertex) and (v, t)in (called

an in-vertex). Each vertex in the transformed DAG has a label

(u, t) where u is the vertex instance and t is the time instance

(Fig. 1(c)). Formally, we define the graph transformation

in the state-of-the-art transformation-based execution work

Trans [52], [53]:

STEP 1: VERTEX TRANSFORMATION. Suppose that the

original graph G is transformed to a new graph G′. Let Tin[v]
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TABLE I: Time and space complexity comparison.

Algo.
One-Pass Trans A* TEGRAPH

Time Space Time Space Time Space Time Space

Reachability O(|E|) O(|E|+ |V |) O(|E|) O(|E|+ |V |) O(bd) O(|E|+ |V |) O(|E|) O(|E|+ |V |)

Fastest Path O(|E|log(D)) O(|E|+ 2|V |) O(|E|) O(|E|+ |V |) O(bd) O(|E|+ |V |) O(|E|) O(|E|+ |V |)

Shortest Path O(|E|log(D)) O(|E|+ 2|V |) O(|E|log(|E|)) O(|E|+ 2|V |) O(bd) O(|E|+ |V |) O(|E|) O(|E|+ |V |)

Top KNN O(|E|log(D)) O(|E|+ 2|V |) O(|E|log(|E|)) O(|E|+ 2|V |) O(bd) O(|E|+ |V |) O(|E|) O(|E|+ |V |)

and Tout[v] be the set of in-vertices and out-vertices in G′

with the same vertex instance v. Both sets are sorted by

their time instances. All the elements in Tin[v] are unique,

and also is for Tout[v]. The vertices set in G′ is V ′ =⋃
v∈V {Tin[v] ∪ Tout[v]}.

STEP 2: EDGE TRANSFORMATION. First, all edges in the

original temporal graph G are directly included in G′ by

connecting the corresponding transformed vertices. Specifi-

cally, edges are created between the in-vertices set Tin[v] of

each vertex v; and the same for the out-vertices set Tout[v].
Finally, edges are created from Tin[v] to Tout[v] for each

vertex v by the increment of time. Specifically, for each

(v, t) ∈ Tin[v], if it can find a tuple (v, t′) ∈ Tout[v] satisfying

that t′ = min{t′′ | (v, t′′) ∈ Tout[v] , t < t′′} and there

does not exist any in-vertex (v, t′′) ∈ Tin[v] satisfying that

t < t′′ ≤ t′, it will create a direct edge from (v, t) to (v, t′).

With the graph transformed as G′, traditional static graph

execution models such as the priority-queue-based Dijkstra’s

algorithm [60], which uses a priority queue for holding the

distances to the vertices, can be directly applied to process

G′. Fig. 2(b) shows the updating process of edge (b, c, 3, 4) in

Trans [52], [53]. Unlike the static execution that requires both

(b,2) and (b,3) to individually update (c,4) and (c,5), the update

function here follows the path: from (b,2)->(b,3), (b,3)->(c,4),

and then (c,4)->(c,5). Since the transformation is about sorting

the edges by the temporal information, high-dimensional tem-

poral information will slightly disturb the transformation. That

is, we will sort the edges by the first dimension of the temporal

vector. If the first dimension information is the same, we will

move on to the second dimension and thereafter. As shown

in Table I, for the reachability and fastest path, Trans uses

Breadth-First Search (BFS) which only needs O(|E|) time and

O(|E|+ |V |) space. For the shortest path and Top KNN, the

time complexity is O(|E|log(|E|)) and the space complexity

is O(|E|+2|V |). Note, shortest path and Top KNN need more

space (e.g., priority queue) for the query.

A*-Based Execution: Under the transformed execution,

some static graph searching algorithms such as A* [61] and

A*-like algorithms [62]–[64] can be directly applied to the

transformed graph for computations. A* uses an additive

evaluation function f(u) = g(u) + h(u) to search the trans-

formed graph. f(u) indicates the priority of each vertex u,

g(u) records the value of u starting from the source, and

h(u) represents the estimated value from u to the destination.

During searching, it finds the vertex, which is yet searched

and presents the highest priority, in the OPEN list, updates the

functions (f , g, and h) of the vertex’s neighbors, then moves

the vertex into the CLOSED list. The time complexity of A*
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is O(bd) as shown in Table I, where b denotes the branching

factor and d denotes the depth of the solution. While this time

complexity is close to O(|E|), it contains higher constants for

involving more updates per computation, i.e., updating f(u),
g(u) and h(u), when compared to our design which only needs

one update. The space complexity of A* is O(|E|+ |V |) for

storing the graph and the vertex states [65].

D. Open Problems and Challenges

Although the state-of-the-art techniques have shown some

promises for providing ad-hoc solutions to certain temporal

path problems, a fast, space and bandwidth efficient solution

still does not exist. We summarize the following three major

challenges facing the current approaches through both empir-

ical results and theoretical analysis.

Computation Challenge: As discussed previously, static

execution approaches (e.g., One-Pass) incur both computa-

tion challenge and memory access overhead for handling the

additional time dimension on execution. Transformation-based

execution, on the other hand, significantly reduces the com-

putation complexity via processing transformed static graphs

(DAGs) but suffers from high latency of using traditional itera-

tive static graph execution models (Dijkstra’s or Bellman-Ford)

and additional graph transformation overhead. Fig. 3 shows

that both One-Pass and Trans experience high latency when

processing the shortest path problem on different temporal

graph datasets. More importantly, these previous approaches

only provide individual optimizations towards specific path

problems without a generic graph format for achieving optimal

performance across different general path problems. Table I

demonstrates the theoretical time complexity across different

designs on several path problems.

Space Challenge: Transforming temporal graphs into

DAGs for processing is much more convenient without in-

troducing time dimension constraints on execution. However,

it suffers from the graph amplification challenge and ad-

ditional overhead for the transformation process itself. For

instance, under the traditional graph transformation strategy

(e.g., Trans), the size of the vertices set increases from |V |
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to |E| and the edges set is doubled. Therefore, the space

complexity of Trans in Table I is up to O(4|E|) while

TEGRAPH always enjoys O(|E|+ |V |) space complexity. The

graph amplification poses significant performance and memory

overhead for the execution phase afterward. First, it increases

the base workload for graph processing. Second, it incurs

large memory overhead which prevents large-scale temporal

graphs from being efficiently executed on a single machine

with out-of-core execution support. Fig. 4 demonstrates this

inefficiency. In our experiments, we observe an average of

2.5× and 20× enlargement for edges and vertices under

Trans, respectively.

Bandwidth Challenge: Recent efforts that simply associate

the temporal information to either traditional edge list or

adjacency list formats would result in redundant data access.

Using time constraint associated adjacency list as an example,

since we put the neighbors of various time constraints together,

at a certain time step, although some neighbors are already

expired, this adjacency list format will still load the entire

adjacency list of an active vertex into the cores for filtering

and further processing. This will exacerbate the I/O intensity

of the temporal graph analytics.

Our Objective: To address these challenges, we propose

TEGRAPH, the first general-purpose temporal graph com-

puting framework for efficiently processing temporal path

problems and their applications (i.e., requires a single update

operation shown in Fig. 2(c)). The core of TEGRAPH is

its novel execution (Sec. III-B, Sec. III-C), transformation

(Sec. III-D) models, and I/O friendly graph representation

(Sec. IV) which effectively address both the performance (e.g.,

Fig. 3) and graph amplification challenges (e.g., Fig.4).

III. TEGRAPH’S EXECUTION AND TRANSFORMATION

A. System Overview

Fig. 5 shows the overall architecture of TEGRAPH, which

consists of three major components: the transformation phase

based on hyper-method (Sec. III-D), the execution phase

supported by topological single scan (Sec. III-B), and a time-

aware graph representation (Sec. IV). Inside TEGRAPH, a

temporal graph is first transformed to a static DAG via our

hyper-method, with new identifiers assigned to vertices and

edges. After the transformation, a novel time-aware graph

format is proposed to efficiently store the graph. Finally,

TEGRAPH’s execution engine applies the proposed topological

single scan to fast process temporal graph applications: it scans

all edges only once according to the order of their starting time

and updates properties of their destination vertices.

B. Execution Model

Sec. II-D has demonstrated that traditional execution models

are limited to only provide ad-hoc or application-specific opti-

mizations without providing a general and unified optimization

strategy for achieving optimal performance across a variety of

temporal path problems and their applications. This is because

they do not leverage the inherently unique features presented

Temporal Graph
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Single Scan
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T
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p

h
 In
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Applications
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Fig. 5: TEGRAPH execution flow diagram.

in temporal graphs and their transformation, which drives the

design of TEGRAPH’s single scan execution model.

First, we define the concept of topological-optimum: if a

path in a graph is an optimal path and each of its subpaths

is also an optimal path, the graph is topological-optimum and

has a greedy feature. Formally, given two vertices u, v, the

path P = {u, v1, v2, ..., vn, v} is an optimal path between

u, v. Under the topological-optimum rule, for any internal

vertex vk, k ≤ n, the path Pk = {u, v1, v2, ..., vk} is also

an optimal path between u and vk. In other words, a subpath

of the final result path is also the solution for the sub-problem.

However, because of the time constraints in temporal graphs,

they are inherently not topological-optimum. That is why the

state-of-the-art strategies tend to apply ad-hoc solutions to find

application-specific optimizations.

Next, we make the following key observation: When a

temporal graph is transformed into a static DAG, it becomes

topological-optimum. More importantly, the processing of its

path problems also follows this feature.

To further prove this observation, we then define the target

function of a temporal path problem: all the temporal path

problems can be described using a target function target(P )
on path P . Note that according to this target function, path

problems can be divided into minimum path problems and

maximum path problems. Because a maximum path problem

can be transformed to a minimum path problem, and vice

versa, we use minimum path to simplify the discussion.

Additionally, if there are more than one legal paths between

two vertices in a graph, the problem is to find the path P with

the minimum target(P ). We define Targetmin(P(u, v)) =
min{target(P ) : P ∈ P(u, v)}. A path P is the minimum

path between u, v if target(P ) = Targetmin(P(u, v)). Thus,

all the legal paths in a DAG G′ after the transformation

from the original temporal graph G can be described as

P = {(u, t1), ..., (v, tk)}. We list the target functions of

common temporal path problems as follows:

1) Reachability: target(P ) = 0 for all legal paths.

2) Fastest path: target(P ) = tk − t1, where tk is the time

instance of the last vertex and t1 is the time instance of

the source vertex.

3) Shortest path: target(P ) =
∑

wi, where wi is the edge

weight on the path.

4) Top KNN: target(P ) =
∑

wi, where wi is the edge

weight on the path.

It is straightforward to derive these temporal path problems

with the given target functions are topological-optimum.
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Fig. 6: Workflows of the single scan execution.

Algorithm 1 Single scan algorithm.

for all v ∈ V do

d[v] = +∞ except v = u. d[u] = 0.

for all e = (u′, v) ∈ E in the topological order do

if d[v] > update(d[u′], e) then

d[v] = update(d[u′], e)

return d[v] for all v ∈ V

Single Scan Execution: By leveraging this unique feature,

the core execution model of TEGRAPH is a universal single

scan execution for fast processing the general path problems

on temporal graphs by treating them as topological-optimum

problems on the transformed graphs (DAGs). Because the

topological order of the DAG is already contained by following

the time instance order from the original temporal graph, it

requires no additional cost for reordering DAG after trans-

formation. Thus, a temporal path problem can be solved by

only a single round of scan over all the edges following the

topological order of the transformed DAG thanks to the time

order of temporal graph. Fig. 6 and Algorithm 1 demonstrates

how our single scan accesses the transformed graph in Fig. 6(a)

merely once and finishes the entire computation. It first

initializes all d[v] = +∞ and initializes the source vertex to

zero (d[(a, 1)] = 0), then scans all the edges according to their

topological order in Fig. 6(a) and updates the distance value of

the destination vertex of each edge. After this single scan, the

distance values for all the vertices are the final results. As seen

in Fig 6(c), we work on edge e1 and update the distance of

(b, 3) to D1, similarly for the rest of the edges. The correctness

of the final results is expressed as Theorem 1 which can be

derived by greedy choice.

Theorem 1. Single scan algorithm can derive the target value

for each vertex.

Fig. 6(b) illustrates how to apply state-of-the-art designs,

e.g., Bellman-Ford [44] or priority-queue based Dijkstra’s

algorithms [60] to the transformed graph. Basically, in each

iteration, it updates edges until the algorithm is converged.

For Bellman-Ford based execution, it introduces large compu-

tational redundancy because of slow convergence speed.

We also notice that our design is closely related to the

existing static execution model, i.e., One-Pass [32]. However,

for updating each edge, we only need O(1) as opposed to

O(log(D)) time complexity required by One-Pass as discussed
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Fig. 7: A parallel single scan example.

Algorithm 2 Parallel single scan.

for all v ∈ V do

d[v] = +∞ except v = u. d[u] = 0.

P= Find edges whose source vertices do not have in-edges in E
for all e = (u′, v) ∈ P in parallel do

if d[v] > update(d[u′], e) then

d[v] = update(d[u′], e)

Remove e in E
if v does not have in-edges in E then

Add out-edges of v to P

in Sec. II-C. The root cause is that One-Pass uses a list to

maintain all the temporal instances for each vertex. There-

fore, although One-Pass still needs a single round scan as

TEGRAPH, it has larger processing overhead than TEGRAPH

for (O(|E|log(D)) vs O(|E|)).

C. Parallel Single Scan

Despite that our single scan sequentially scans the graph

and updates each edge following the order of the transformed

graph (sorted by starting time of edges), it can support

multithreads. Particularly, the parallelism opportunity surfaces

when the edges can be updated independently. Formally, we

define an order ≺ between two edges e and e′ as Equation 1

to show that the update of edge e will affect that of edge e′.
If e ≺ e′, e must be updated before e′.

e ≺ e′ −→ ∃ P | P = e · e1 · e2 · ... · e
′. (1)

Therefore, we can get an edges set M where all the edges

in M are independent. Since our single scan is based on

the topological-optimum which follows the topology order of

the transformed graph (i.e., DAG), M can contain edges in

the subgraph with their source vertices has no in-edges (in-

degree number of source vertices are zero). Using Fig. 7 as

an example, since the in-degree of vertex a and b is zero, M1

contains edges of a and b, that is, {e1, e2, e3, e4}. We can

hence use four threads to work on these four edges in parallel.

During computation, we further get M2 with {e5, e6, e7, e8}.

Here, again, we can assign various threads to work on these

edges in parallel as shown in Algorithm 2. In summary, our

single scan can be extended to support parallel processing.

D. Transformation Model

To tackle the graph amplification challenge, we propose

a novel transformation model for further accelerating the

execution phase (discussed previously) via effectively condens-

ing the transformed DAG size without any accuracy loss on

graph information. This can dramatically reduce the execution
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workload and memory footprint to increase the chance for in-

memory processing with reduced disk I/O.

From Fig. 1(a), we observe that after the transformation the

same vertex has repeated appearances in a DAG at different

time instances, e.g., vertex a is expanded to multiple new

vertices (a, 1), (a, 2) and (a, 6) at different timestamps 1, 2
and 6. All of them share the same parent vertex a. Due to this

unique feature of the temporal graph, the transformed DAG

may contain many redundant vertices that are unnecessary

for information propagation in temporal graph execution (e.g.,

(a,2)). Specifically, we find that when in-vertices are used to

propagate information to out-vertices, it can lead to redundant

vertices and edges.

Fig. 8(a) demonstrates such redundancy in the state-of-the-

art transformation (Sec. II-C). This example extracts all the

time instances of the vertex b and their connectivity from a

DAG (not shown here). For the in-vertices (b, 1) and (b, 3),
since they only propagate e1 and e2 to next time instances,

they are unnecessary for processing and can be merged into

(b, 2) and (b, 4), respectively. After this, since the out-vertex

(b, 5) is not propagating information, it can be merged with the

previous time instance (b, 4). Based on this unique redundancy

feature of temporal graph transformation, we propose a new

transformation method applied prior to the execution, named

hyper-method. It is used to reduce the size of the transformed

graph by merging unnecessary vertices into the essential ones.

Specifically, we define the original temporal graph as G and

the transformed graph (DAG) as G′. We only pick the essential

vertices for execution, called hyper vertices, and the related

vertices that are redundant are merged with them. Our hyper-

method guarantees the topological structure of DAG and the

hyper vertices’ target values are unchanged.

We formally define hyper vertex. A hyper vertex must be

an out-vertex. The entire hyper vertices set is defined as

Thyper[u] = {(u, t) : (u, t) ∈ Tout[u]} and satisfies at least

one of the following criteria:

• Criterion 1: ∀ (u, t1) ∈ Tout[u], t � t1
• Criterion 2: ∃(u, t1) ∈ Tin[u], t1 � t ⇒ ∀ (u, t2) ∈
Tout[u], t2 < t1 or t2 � t

Using Fig. 8(a) as an example, there are two in-vertices and

three out-vertices. Vertex (b, 2) is a hyper vertex because it

has the smallest time instance (Criterion 1). (b, 4) is also a

hyper vertex because there is no out-vertex between (b, 3) and

(b, 4) (Criterion 2). However, (b, 5) is not a hyper vertex. Thus,

Thyper[b] = {(b, 2), (b, 4)}. Furthermore, the merge operation

for vertex (u, t) /∈ Thyper[u] is performed if it satisfies at least

one of the following conditions:

• Merge Cond1: When (u, t) ∈ Tin[u], it can be merged

to vertex (u, t1) ∈ Thyper[u] if t1 = min {ti : (u, ti) ∈
Thyper[u] and ti ≥ t}

• Merge Cond2: When (u, t) ∈ Tout[u], it can be merged

to vertex (u, t1) ∈ Thyper[u] if t1 = max {ti : (u, ti) ∈
Thyper[u] and ti < t}

Merge Cond1 and Cond2 describe how an in-vertex and out-

vertex is merged into a hyper vertex, respectively. Fig. 8(b)
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Fig. 8: Hyper-method illustration. Dash arrows indicate the

time order, not the actual edges in the DAG.

is reduced from Fig. 8(a) by Merge Cond1. Fig. 8(c) is

reduced from Fig. 8(b) by Merge Cond2. We denote the

merged graph as G′′ (Fig. 8(c)). The target value of vertex

v is denoted as d[v]|G′ for graph G′ and d[v]|G′′ for graph

G′′. We need to prove that for any vertex v in G′ there will

be d[v]|G′ = d[v]|G′′. To prove this, we separate the real

edges from the virtual edges in G′ and G′′. The real edges are

the edges that exist in the original graph G, while the virtual

edges do not exist in G and they are created between the same

vertex’s different time instances, e.g., all the edges between

(b, i) in Fig. 8(a). First, we have an observation that the virtual

edges do not have weights (w = 0) and they have no impact

on updating the target values. This is formally defined as

Observation 1. Based on this, we can find that the target values

are preserved with the same real edge sequence. It is defined

and proved as Lemma 1. Finally, we propose Theorem 2 which

shows that the hyper-method does not change the target values

of vertices for the minimum (maximum) path problem.

Observation 1. Given a virtual edge e which connects

two vertices, i.e., (u, t1) and (u, t2), computing on e, i.e.,

update((u, t1), e), will not change the distance of the des-

tination endpoint (u, t2).

Lemma 1. Given two paths P1, P2 with the same real edge

sequence, target(P1) = target(P2).

Proof. Given a path P1 = e1 · e2 · ... · en−1 ·
en, the target value is calculated by target(P1) =
update(update(...update(u, e1), ..., en−1), en). Because vir-

tual edges do not change the target value, we can omit all

virtual edges in the equation, i.e., the target value is calculated

by all real edges. The new equation is as follows, in which

erk denotes the k-th real edge in the path P .

target(P2) = update(update(...update(u, er1), ..., erk−1
), erk)

According to Observation 1, target(P1) = target(P2).

Theorem 2. Targetmin(u, v) are the same in both G′ and

G′′.

Proof. Given any path P in G′ from u to v, there exists a

P ′ in G′′ with the same real edge sequence. According to

Lemma 1, target(P ) = target(P ′). By definition, d[v] =
min{target(P ) : P ∈ P(u, v)}. Thus, d[v]|G′ ≤ d[v]|G′′

because for any path to v in G′′, there exists a path in G′

with the same target value.

Similarly, d[v]|G′′ ≤ d[v]|G′. Thus, d[v]|G′ = d[v]|G′′.
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IV. TIME-AWARE GRAPH REPRESENTATION

To better support our single scan execution, TEGRAPH

introduces a novel time-aware graph data organization. Par-

ticularly, our single scan execution requires processing the

temporal graphs in a time elapsing order. At each time

step, the graph is further traversed in a topological manner.

Consequently, directly storing the vertices of the same label

together would result in loading a tremendous amount of

unnecessary data during processing. Using vertex a in Fig. 6(a)

as an example, if we store the edges connected to vertex a,

i.e., (a, 1)→(b, 3), (a, 1)→(c, 5), and (a, 6)→(d, 8) together,

we will need to load them when either (a, 1) or (a, 6) is active.

Clearly, when (a, 1) is active, loading the neighbors for (a, 6)

is unnecessary, and vice versa.

The good news is that the graph topology of the transformed

graph in Fig. 6(a) has already captured the temporal informa-

tion. For example, if edge ei has larger time instance than

ej , then only ej can update ei. In other words, ei and ej
are regarded as different edges in the graph. Consequently,

TEGRAPH can regard identical vertex IDs with dissimilar

time instances as different vertices. This design decouples the

connection between vertices with the same vertex label but

with different time instances. With this further transformation,

the transformed graph can be viewed as a new static DAG.

For example, in Fig. 6(a), vertex (a, 6) will be viewed as a

different vertex from (a, 1) on computing. Thus vertex (c, 5)
can directly update vertex (a, 6) and will not affect vertex

(a, 1). Formally, during computation, for each vertex u, the

value of vertex (u, tmax) (tmax is the maximum time instance

of vertex u) will be the target value of u because there must be

a path from each vertex of u ((u, ti), ti < tmax) to (u, tmax)
and the value of (u, tmax) has been updated by vertex (u, ti).
In other words, this data update will not affect the correctness

of the processing algorithms. For data representation, we can

simply store this new static graph into the popular compressed

sparse row format because the vertices with the same ID and

time instance are grouped together.

Fig. 9 shows how to store Fig. 6(a) in an external-memory

setting. Here we target external-memory setting because tem-

poral graphs are often too large to fit in the main memory of

the commodity computing systems. Basically, the entire graph

is stored according to the increasing time instances. At each

time step, identical vertices are grouped together. We further

partition the graph into several blocks so that each block can

Algorithm 3 Out-of-core execution.

Blocks = {B1, B2, .., Bk}, E is partitioned into k blocks

for all Bi ∈ Blocks do

Parallel single scan in Bi

fit into the memory. As shown in Algorithm 3, during out-of-

core execution, TEGRAPH applies the parallel single scan to

the just loaded block. To further hide the data transfer cost, we

overlap the computing of one block with the transfer of another

due to the fact that the execution and disk I/O are independent.

Furthermore, there are two optimizations proposed to enable

time-aware format conversion: vertex grouping to optimize the

vertex transformation, and parallel relabeling to optimize the

edge transformation.

Vertex Grouping: All transformation algorithms, including

our hyper-method in TEGRAPH, require to sort the vertices

for vertex transformation, i.e., putting the vertices sets Tin[u]
and Tout[u] in a logical array to relabel all the vertices

into integers. The typical sorting method used in the current

transformation phase (e.g., that in Trans) are common sorting

algorithms (e.g., quick-sort) with 2-dimension comparison,

resulting in the time complexity of O(|E|log(D)). But due

to our hyper-method, we only need to sort the hyper vertices,

e.g., (a, t). Since the second dimension (t, time instance) is

already sorted due to the edge stream with increasing starting

time, only the first dimension (i.e., vertex label) is needed

to be sorted with the second dimension unchanged. Then the

cumulative flow diagram is constructed to group all vertices

(u, t) for the same vertex u with its time instances relatively

positioned in the edge stream. When the vertex u is grouped,

all vertices (u, t) are sorted. This brings down the sorting time

complexity from O(|E|log(D)) to O(|E|).
Parallel Relabeling: After vertex transformation, TE-

GRAPH needs to identify which hyper vertices can be further

merged by using our hyper-method. For each in-vertex, we

need to find a hyper vertex with the minimum time instance

no earlier than it. And for each out-vertex, the correspond-

ing hyper vertex to merge must have the maximum time

instance no later than it. As there are no data dependencies

during searching, the relabeling can be done in parallel with

O( |E|log(D)
Threads_number

) time complexity. The time complexity of

this process is near O(|E|) under multiple threads and the

overall graph transformation time complexity is also O(|E|).
Streaming Graph Support: For each newly arrived edge,

we need to update the transformed graph. Because these new

edges have bigger time instances than the existing ones [36],

we can simply create new hyper vertices for those new arrivals.

Therefore, the average updating time complexity is O(1),
similarly for the update to the distance value of the new edges.

A. I/O Complexity Analysis

This section quantitatively analyzes the I/O complexity of

TEGRAPH. Note that One-Pass and Trans do not provide out-

of-core execution support due to the large memory overhead

(Sec. II-D). For baseline, we choose GridGraph [3] and

Wonderland [2] which are suitable for high diameter graphs

because the transformed graph (DAG) often has a longer
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diameter. Specifically, we feed transformed graphs into these

out-of-core graph engines and apply static graph algorithms

in the transformed graphs. Note that they operate on the same

transformed DAG as we do. Also, since other out-of-core

engines such as LUMOS [66] are not optimized for high-

diameter graphs, we do not analyze them here.

TABLE II: Quantitative analysis of out-of-core execution.

Systems TEGRAPH GridGraph Wonderland

Complexity min(|E|/S,|E|/C) N*β*(|E|/S+|E|/C/T) N*γ*(|E|/S+|E|/C/T)

Table II shows the quantitative analysis on out-of-core exe-

cution performance of TEGRAPH, GridGraph and Wonder-

land. |E| represents the number of edges; S is the sequential

read bandwidth of the disk; C is the CPU processing speed

(edges/sec); N is the iteration number; β is the proportion

of the average active graph data of GridGraph and γ for

Wonderland; T is the thread number. We can ignore the

abstraction computation overhead of Wonderland because the

abstraction size is usually small. We observe that the out-of-

core performance for all three is bounded by graph size, I/O

bandwidth, and CPU speed.

Table II suggests that TEGRAPH always outperforms Grid-

Graph and Wonderland in theory. Also, the performance

of GridGraph and Wonderland is heavily impacted by the

nature of the input graphs and algorithms, which is reflected

in the parameters N , β, or γ. However, because of our

hyper-method together with only a single round of sequential

readings on the transformed graph, TEGRAPH significantly

reduces the random memory accesses on edges and iterations

(N). Furthermore, TEGRAPH can pipeline the loading of data

blocks with the execution phase to hide I/O latency.

V. TEGRAPH PROGRAMMING INTERFACE

TEGRAPH provides intuitive programming model and APIs

for users to easily express general path problems and their

applications on temporal graphs via simple target function

update (Sec. III-B). Its key interfaces are described below.

In the framework of TEGRAPH, each edge is denoted as a 5-

tuple (source, dist, start, end, weight), representing the source

and destination vertices, start and end time, and the weight

for the edge. Each vertex is represented by a 2-tuple (vid, d),

indicating its vertex instance and property (i.e., the target value

of vid), respectively. The framework inputs sid, did, V and

E, and returns the query answer from sid to did, where sid
is the source vertex of each query, did is the target vertex, V
represents the vertices set and E is the edges set. In general,

the framework works by sequentially invoking the following

interface functions: TRANSFORM(), VINIT(), EMAP() and

VAGGRE(). TRANSFORM() transforms the graph into a static

DAG only once, and then the transformed graph can be

reused by various computations afterward. VINIT() is used to

initialize the property of each vertex through the Init function

provided by users. EMAP() is used to update all edges based

on our single scan algorithm. Each edge will modify the

properties of the corresponding vertices. EMAP() calls the

user-defined function Update to calculate the new distance

for each edge, and another user-defined function Compare to

update the distance of the current edge’s destination vertex.

VAGGRE() is provided to aggregate the properties of vertices

with the same parent vertex instance to output the final result.

To output the final distance of the target vertex did, the

distance of each vertex v in Thyper[did] is aggregated by

Compare. It needs to be stressed that users only need to define

Init, Update, and Compare functions, according to certain

applications.

We take the shortest path as an example to show the usage

of APIs. For the Init function, we set the values for the source

vertices (sid) to 0 and the others to +∞. The Update function

is the same as that in the traditional shortest path algorithms,

i.g., edge’s weight plus the distance of the current vertex to

achieve a new distance. The Compare function chooses the

smaller distance between the two distances. With our general

programming model, users only need to provide a few lines of

code for implementing different temporal graph applications.

VI. EVALUATION

A. Experiment Settings

Testbed: All the evaluations are conducted on a server using

Duo Intel(R) Xeon(R) Processors E5-2640 v2 @ 2.00GHz (8-

cores/processor, total 16 threads) with 20MB L3 Cache, 32GB

DRAM, and a 1TB SSD drive with a throughput around

650 MB/s for sequential reads. TEGRAPH is implemented

in around 3000 lines of C++ code and uses OpenMP for

multithreading (16 threads). To further evaluate TEGRAPH’s

out-of-core execution efficiency, we apply cgroup to set var-

ious memory limits based on the input datasets. The system

fundamentals of TEGRAPH are briefly described as follows.

TABLE III: Real-World Temporal Graph Datasets(k=103).

Graph Vertices (|V |) Edges (|E|) Avg(D) Max(D)
Flickr [67] 2.3M 33.1M 28.8 3.42E4

Growth [68] 1.8M 39.9M 42.7 2.27E5

Edit [69] 21.5M 266.8M 21.1 3.27E6

Delicious [70] 33.8M 301.2M 66.7 4.36E6

Twitter [71] 41.7M 1.47B 70.5 6.42E6

UK-Union [72] 134M 5.51B 70.3 3.04E6

Input Graphs: We selected six popular benchmarks in

Table III for our evaluation. Edges in the temporal graph edge

stream are sorted by their starting time. Note that we select to

use large static graphs Twitter and UK-Union because publicly

available temporal graphs are not large enough for evaluation.

For large static graphs which have not been attributed with

time instances, we randomly allocate time instances to them

according to the temporal graph format that is consistent with

the state-of-the-art works. Main attributes of these graphs are

listed in Table III. Note that Avg(D) and Max(D) represent

the average and maximum vertex degree, respectively. They

are important attributes for applications whose processing

overhead can be significantly affected by the vertex degrees.

Applications: We evaluate four typical temporal path ap-

plications: reachability, fastest path, shortest path, and top-k

nearest neighbors. For the top-k nearest neighbors, we use
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the shortest path to calculate the top k nearest neighbors and

choose k as |V |/10. We randomly select 100 vertices as input

and report the average execution time for each application

(single-source query).

Evaluation Methodology: Traditional static graph com-

putation models such as vertex- or edge-centric approaches

will lead to high overhead because they require additional

efforts to process time constraints recorded on the topological

structure. When applied to time-aware format in Sec. IV, we

find TEGRAPH can work with both approaches. We evaluate

the performance of TEGRAPH under two modes: (1) the full

memory mode which puts all the graph data inside memory;

and (2) the out-of-core mode uses one SSD drive to hold the

graph data. The full memory mode demonstrates the efficiency

of TEGRAPH compared to two state-of-the-art works discussed

in Sec. II-C: One-Pass [32] (static execution) and Trans [52]

(transformation-based execution). One-Pass and Trans have

not been open-sourced and we implement them according to

the original paper as fast as possible. Besides, we also test

A* in Sec. II-C with the transformed graph of Trans as the

input. We evaluate the performance improvement from each

component in TEGRAPH including parallel single scan, hyper-

method based transformation, and the time-aware graph trans-

formation. For the out-of-core mode, we compare TEGRAPH

with GridGraph [3] and Wonderland [2] as discussed in

Sec. IV-A. We use their most current official versions. For

fairness, all engines are fed with the same transformed graphs

that are the outputs of our hyper-method based graph trans-

formation. We report the execution time breakdown for both

graph partition and execution.

B. Overall Performance: Full Memory Mode

In this section, we provide the overall performance analysis

and comparison across different designs under the full memory

mode to emphasize TEGRAPH’s contribution as a whole and

its impact on different temporal path applications. The reported

overall performance does not include the execution time for

graph transformation for both TEGRAPH and Trans because

the same transformed graph can be used by many applications

to average out the graph transformation time. The graph

transformation will be discussed independently in Sec. VI-D.

In Sec. VI-C, we will demonstrate the piecewise contribu-

tion breakdown from our proposed techniques in TEGRAPH.

Table IV illustrates the overall execution time comparison

on all datasets in Table III except UK-Union which can not

fit the main memory (i.e., takes 88GB) and will be used

for out-of-core testing. The evaluation uses 16 threads for

multithreading and the scalability is shown in Sec. VI-C.

Overall, we observe that TEGRAPH outperforms One-Pass,

Trans, and A* for every data point, with speedups from

1.69× (Top KNN on Flickr) to 241.18× (Shortest Path

on Twitter). TEGRAPH also performs better with larger graphs.

Reachability: Since the algorithm for reachability used in

Trans and A* is the same as the fastest path, we only compare

TEGRAPH and One-Pass here. Table IV shows that TEGRAPH

can achieve a speedup up to 16.74× over One-Pass. Although

both designs have the same theoretical time complexity (Ta-

ble I), TEGRAPH outperforms One-Pass in three aspects. First,

due to the topological-optimum nature, TEGRAPH only needs

to use bitwise operations to update an edge, i.e. d[v] | = d[u]
for (u, v, s, t), while One-Pass requires more operations for

updating, i.e. if d[u] ≤ s, d[v] = min{d[v], t}. Second, in

reachability, TEGRAPH only requires to process two variables

for each edge (the source and destination vertex labels) while

One-Pass requires four (i.e., start and end time additionally)

because of the extra time dimension. Third, although TE-

GRAPH benefits from our multithreading design (e.g., 3× to

4× under 16 threads), we observe that the parallel versions for

One-Pass and Trans [52] both perform worse than their single-

thread versions due to the large message-passing overhead.

Fastest Path: For One-Pass, TEGRAPH processes 26.71 ∼
112.61× faster than One-Pass on different workloads. Shown

in Table I, for fastest path, the time complexity of One-

Pass is O(|E|log(D)) while TEGRAPH is O(|E|). With a

larger graph, log(D) tends to be larger which further benefits

TEGRAPH. For Trans, it applies BFS-based algorithm to the

fastest path [32]. However, TEGRAPH can still achieve 7.65 ∼
16.30× speedup over Trans due to three reasons: (1) although

both designs have the same theoretical time complexity, Trans

consumes more time in each iteration to maintain each vertex’s

degree (up to 36% of the total execution time); (2) the graph

size after transformation is 1.84 ∼ 2.56× larger than that from

TEGRAPH, resulting in more computation and cache misses;

(3) parallel single scan can also achieve a 2.69 ∼ 4.11×
speedup than the single-threaded version which is studied in

Sec. VI-C. Compared to A*, TEGRAPH gets 3.75 ∼ 13.04×
speedup. For each update, A* has to update the three functions

of its neighbors (studied in Sec. II-C). However, TEGRAPH

needs only one single operation for each edge update, while

parallel single scan can speed up the execution process as well.

A* has nearly O(|E|) time complexity but has larger constants

than TEGRAPH. Additionally, the input transformed graph of

A* is the same with that of Trans, which is 2.09× larger than

TEGRAPH on average.

Shortest Path: TEGRAPH achieves significant performance

gains over both One-Pass and Trans: up to 90.48× and

241.18×, respectively. The performance gap comes from

TEGRAPH’s lower time complexity which reduces from

O(|E|log(D)) (One-Pass) and O(|E|log(|E|)) (Trans) to

O(|E|) as shown in Table I. When compared to A*, TEGRAPH

can get 4.05 ∼ 17.36× speedup. The improvement comes

from the smaller computation constants, transformed graph of

TEGRAPH over A*, and the parallel single scan of TEGRAPH.

Note, even using the same transformed graph as TEGRAPH,

A* still takes 8.74× longer time than TEGRAPH.

Top-K Nearest Neighbors: Its computation consists of two

portions: calculating the shortest path for all vertices and using

a priority queue to find k vertices with the smallest shortest

path. Table IV shows that compared to One-Pass, Trans,

and A*, TEGRAPH achieves up to a 39.74×, 104.99×, and

8.08× speedup, respectively. The reasons for these speedups

are analogous to the reasons in the shortest path.
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TABLE IV: Overall Execution Time in Seconds.

dataset
reachability fastest path shortest path top k nearest neighbors

TeGraph One-Pass TeGraph One-Pass Trans A* TeGraph One-Pass Trans A* TeGraph One-Pass Trans A*

Flickr 0.0086 0.0907 0.0987 2.6368 0.7546 0.3697 0.0986 1.2522 5.1928 0.3998 0.4324 1.5859 5.5265 0.7336

Growth 0.0162 0.1794 0.1446 4.5404 1.1879 1.0572 0.1458 2.8376 20.610 1.3602 0.4985 3.1903 20.962 1.7130

Edit 0.1131 1.6978 0.6184 64.574 6.1619 5.6689 0.6213 42.793 133.67 9.8426 4.2825 46.455 137.33 13.504

Delicious 0.1942 3.3769 1.1095 117.60 15.798 13.428 1.1140 89.362 254.06 15.243 7.0614 95.310 260.01 21.191

Twitter 1.3613 22.794 6.1952 697.64 100.98 80.785 6.2266 563.41 1501.7 108.11 14.380 571.56 1509.9 116.27
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End-to-end Comparison: Although graph transformation

can be used for all applications to amortize the graph trans-

formation time, under the end-to-end comparison, TEGRAPH

can still get up to 1.17 ∼ 7.18× speedup than One-Pass which

does not need the preprocessing. This is because the end-to-

end execution only needs O(|E|) time complexity, whereas

One-Pass needs O(|E|log(D)) time complexity.

C. Piecewise Breakdown

To evaluate the performance improvement gained through

our optimizations, topological single scan (multithreading) and

hyper-method, we compare the execution phase of TEGRAPH

with Trans under different optimizations, i.e., only single scan

(SS) and single scan together with hyper-method (SS+HM)

shown in Fig. 10. Then we will show the scalability of our

parallel single scan method in Fig. 11.

(I) Impact of Topological Single Scan: Fig. 10 shows

that TEGRAPH’s topological single scan achieves up to 124×
speedup over the priority-queue based Dijkstra’s algorithm

applied in Trans on the Twitter dataset. Even on the smallest

dataset Flickr, the speedup is around 27.8×. This significant

performance improvement comes directly from the reduction

of time complexity from O(|E|log(|E|)) of priority-queue

based Dijkstra’s to O(|E|) of TEGRAPH’s single scan. Ad-

ditionally, our single scan converts the random memory ac-

cesses to sequential ones which further reduces cache misses.

Furthermore, we study the scalability impact of multithreading

in our single scan. In Fig. 11, we take the Twitter dataset

as an example to demonstrate our single scan’s scalability.

Compared to the single-threaded version, multithreading not

only needs to update each edge but also requires maintaining

the degree number of vertices as seen in Sec. III-C. This will

introduce more operations, e.g., the updating operation will

be atomic to ensure correctness. Although this can affect the

scalability, we still observe an overall 2.69 ∼ 4.11× speedup.

(II) Impact of Hyper-Method: Hyper-method aims to

eliminate unnecessary redundancy in order to (1) reduce the

size of the transformed graph which lowers the memory con-

sumption, and (2) improve the core execution’s performance

TABLE V: Transformed Graph Size (k=103).

TeGraph Trans

Dataset |V| |E| |V| |E|

Flickr 5556k 36732k 38718k 69555k

Growth 5789k 47980k 50351k 88433k

Edit 31319k 277170k 374866k 620193k

Delicious 42036k 310319k 529894k 797300k

Twitter 75792k 1502505k 1508208k 2934921k

UK-Union 295037k 5805037k 6339373k 11849373k
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Fig. 12: Graph transformation time breakdown.

with a smaller workload. For (1), Table V demonstrates that,

compared to Trans, TEGRAPH can reduce the total number

of edges and vertices by up to 61% and 94.9%. Since TE-

GRAPH’s time complexity is O(|E|), reducing edges’ number

directly affects the processing time. Meanwhile, reduction of

vertices benefits the out-of-core execution because vertices are

more likely to be held in the main memory. For (2), we use the

shortest path problem as an example to showcase our hyper-

method’s impact on core execution. Fig. 10 shows that hyper-

method contributes up to 2.6× performance improvement over

the TEGRAPH version without it.

D. Time-Aware Graph Transformation

We evaluate the effectiveness of the two steps introduced

to transform the temporal graph into our time-aware format.

Specifically, we compare the transformation phase of TE-

GRAPH with that in Trans. Note that UK-Union is transformed

under the out-of-core mode for both engines and we report the

overall execution time. As discussed previously, there are two

steps in graph transformation: vertex and edge transformation.

TEGRAPH applies vertex grouping and parallel relabeling to

accelerate these two steps respectively. Fig. 12 shows the graph

transformation time breakdown under two designs. The vertex

grouping for optimizing vertex transformation can get up to

18× speed up when compared to the sorting method in Trans.

When the datasets get bigger, vertex grouping can retain better

improvement because our time complexity of vertex grouping

is near to O(|E|) but the time complexity of the traditional

sorting method in Trans is O(|E|log(D)). That means Trans

will be greatly affected by degrees. For parallel relabeling
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Fig. 13: Out-of-core evaluation on the UK-Union.

which is used to optimize edge transformation, TEGRAPH uses

OpenMP in C++ that presents good scalability. Particularly,

we achieve nearly 15× speedup under 16 threads concurrency.

Overall, TEGRAPH obtains up to 16.97× speedup on graph

transformation over Trans.

E. Out-of-Core Execution

To prove our the quantitative performance modeling on

different out-of-core execution designs in Table II, we ex-

perimentally evaluate TEGRAPH against two state-of-the-art

out-of-core engines on the UK-Union dataset, GridGraph

and Wonderland. For testing, we use cgroup to limit the

memory consumption to all three engines. Specifically, we

evaluate the systems using the memory sizes of S, S/2, S/4,

S/8, and S/16, where S is the size of the transformed graph.

For fair evaluation, we feed them with the same transformed

graph from TEGRAPH. We list both the graph partition and

execution time. Note that the graph partition time here is for

partitioning the graph into different blocks to fit the memory

size for out-of-core execution, i.e. 2D partition for GridGraph,

2D partition plus abstraction finding (for iteration reduction)

for Wonderland, and 1D partition for TEGRAPH.

Fig. 13 shows the performance comparison with the two-

phase breakdown. Overall, TEGRAPH outperforms the other

two engines in both graph partition and execution. For graph

partition, TEGRAPH partitions the graph into blocks linearly

with very low overhead, while Wonderland requires much

longer time on graph partition to complete both 2D partition

and abstraction searching. GridGraph has better processing

than Wonderland because of no abstraction optimization over-

head. For execution, both GridGraph and Wonderland read

edges and modify the properties of vertices until convergence.

However, these iterative methods still perform poorly on long

diameter graphs such as the transformed DAGs here. More

iterations could lead to larger disk I/O access. On the contrary,

TEGRAPH only reads the dataset once from the disk with

the disk I/O linearly proportion to |E|. Thus, GridGraph

performs much worse than TEGRAPH for graph execution

even under the full memory mode. Wonderland proposes a

graph abstraction mechanism to reduce the iteration number

on GridGraph but is still slower than TEGRAPH especially for

the lower memory modes because TEGRAPH only requires one

iteration regardless of the memory size. Our TEGRAPH out-

performs Wonderland and GridGraph by up to 5× and 43.4×
respectively for the execution time. Disk I/O occupies 79% of

the total execution time in TEGRAPH, 74.5% of Wonderland,

and 47.9% of GridGraph, due to the fast execution algorithm

in TEGRAPH. When the memory limit is under S/16, the

disk I/O of Wonderland is 4.71× larger than TEGRAPH and

GridGraph is 26.3× larger than TEGRAPH. For the memory

usage, under different memory limits, all three engines adjust

the partitioned graph size to make the maximum usage of the

main memory for disk I/O reduction.

VII. RELATED WORK

The existing temporal path problems are solved by using ad-

hoc solutions or application-specific optimizations. There are

some other applications that adopt temporal path problems as

their core component including online reachability [53], [73],

betweenness centrality [55], minimum spanning tree prob-

lem [59], widest path [74], random walk [23], and components

problem [75], [76]. These applications are all based on path

problems, thus they can all benefit from our TEGRAPH.

For temporal graph processing, several static-execution

based engines [35], [50], [51], [77], [78] have been proposed,

but they are slower than our static-execution baseline ONE-

PASS due to high time complexity of O(|E|Dlog(|V |D)).
Some distributed works have been proposed such as

GRAPHITE [79] which optimizes temporal partitioning and

message passing, but they mainly focus on the system-level op-

timizations without fundamentally reducing algorithms’ time

complexity. Some temporal graph database systems [46]–[48],

[80] proposed to mainly focus on traversal language which

provides the temporal syntax for temporal graph otherwise

algorithm and system-levels optimizations of temporal graph

applications. There also exist efforts that focus on graph stor-

age strategy such as GraphOne [45] and LiveGraph [81]. These

attempts use graph data stores to provide specific graph storage

formats for real-time analysis on temporal graphs. Whereas, all

these systems fall short at finding a temporal-aware format for

temporal graphs. Together with our topological-optimum and

single scan, TEGRAPH can further speed up temporal graph

computing.

We also notice that several studies have proposed specific

optimizations on static graph reduction [82], [83]. However,

they cannot replace our hyper-method because hyper-method

guarantees accuracy and correctness without losing any in-

formation, while almost all these reduction methods can only

perform approximation.

VIII. CONCLUSION

In this paper, we propose TEGRAPH, the first general-

purpose temporal graph computing engine for efficiently pro-

cessing temporal path problems and their applications. The

core of TEGRAPH is its temporal information-aware graph

format, novel single-pass execution workflow, and information

redundancy removing transformation models which effectively

address the computation, space, and bandwidth challenges.

Taken together, TEGRAPH can achieve up to 61% disk space-

saving, up to 17× graph transformation speedup, and up to

two orders of magnitude performance speedup over the state-

of-the-art designs.
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