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Abstract—RDMA (Remote Direct Memory Access) provides
memory semantics to access the remote memory directly bypass-
ing remote CPUs. It can provide low latency and high throughput
that can benefit many data center applications. Though a lot of
efforts had been made in the literature, this paper tries to find
more opportunities to boost the performance of memory semantic
operations in the RDMA network. Similar to the optimizations
for local memory operations, we find that the performance
can be improved in the RDMA network after considering the
vector IO mechanism, the performance asymmetry between
sequential and random access, IO consolidation, NUMA effects,
as well as the atomic operations (such as compare and swap)
provided by the underlying hardware. We have done a com-
prehensive empirical study on the influences from these factors
for the memory semantic operations in RDMA network and
provide guidelines to improve applications. Experimental results
show that four typical applications, disaggregated hashtable,
distributed shuffle, distributed join, and distributed log are
improved by 2.7×/5.8×/5.3×/9.1× respectively after considering
memory semantics related optimizations.

I. INTRODUCTION

RDMA network is now widely used in modern data
centers. Such network infrastructures are widely deployed
in cloud platforms including Microsoft [20], Alibaba
Cloud [34] and other ISPs to reduce the heavy CPU
loads. RDMA network can support both one-sided verbs
(RDMA Write/Read/Atomic) and two-sided verbs (RDMA
Send/Recv). One-sided verbs are memory semantic opera-
tions because they can access the remote memory directly,
similar to normal local memory loads and stores. They can
even bypass remote CPUs, i.e., accessing the remote mem-
ory without remote CPU involvement. Two-sided verbs have
similar interfaces as traditional message passing mechanisms,
and remote CPUs are constantly interrupted to process net-
work messages. According to prior studies [55], one-sided
RDMA verbs (memory semantic operations) have at least two
advantages: 1) higher performance than two-sided RDMA in
terms of both throughput and latency, and 2) bypassing kernel
and avoiding the involvement of CPU on the receiver side,
effectively reducing the remote CPU overhead.

Because the memory semantic operations can provide high
bandwidth and low latency, it is adopted as the fundamental
building blocks [2] for many current data center applications.
FaRM [15] is a memory distributed computing platform that
adopts one-sided RDMA. Herd [23] presents an RDMA-based
key-value store, which provides many useful optimization
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techniques from the aspect of network. InfiniSwap [19] man-
ages remote memory with a back-end allocator to gain high
utilization, and memory semantic RDMA makes it possible
that different functionalities can be distributed to different
kinds of blades.

Though the one-sided RDMA model boosts many cloud
applications, most of them use RDMA network as a fast data
transfer method. For instance, based on RoCE, DCQCN [58]
proposes a novel window-based algorithm implemented in the
NIC to mitigate network congestion. However, we find out
that we can also consider the RDMA network as part of
the memory system. Many optimizations for local memory
are also applicable for remote memory. Specifically, this paper
investigates the following aspects to improve the memory
semantic operations in RDMA network.
Hardware-assisted vector IO (Section III-A). The standard
POSIX programming APIs provide the vectorized version of
read/write, i.e., readv and writev. They are used to copy
vectorized data from/to the IO system. Despite the convenient
programming model of transferring multiple blocks of data,
the performance can also be improved by batching the data
and reducing the system call overhead. In the hardware level,
RDMA-enabled NICs (RNICs) are attached to PCIe buses, and
the underlying PCIe buses can transfer the vectorized data.
Thus, the vector IO can also benefit the memory semantic
operations in RDMA network.
Performance asymmetry between sequential and random
memory access (Section III-B). In local memory, the sequen-
tial write is nearly 2.92× and 6.85× faster than random write
and inter-socket random write (NUMA effects as mentioned
below). Base on this observation, Polymer [57] can bring
about 1.58∼53.09× improvement in graph processing. As the
destination of RDMA network is remote memory, and RDMA
network has low latency and high bandwidth, such asymmetry
also exists and is visible in RDMA supported system.
IO consolidation (Section III-C). Transferring very small
amount of data such as 1 to tens of bytes (e.g., 64 bytes)
can not fully utilize the underlying bandwidth of the net-
work, and incurs a phenomenon called Packet Throttling
(Section II-B1). Thus, it is meaningful to consolidate multiple
small IO requests in the same data block and make a single
RDMA request at once instead of multiple requests. This will
effectively reduce the number of data transfer operations.
NUMA effects (Section III-D). Many local optimizations
must rely on NUMA (Non-uniform Memory Access) ef-
fects [27]. For the RDMA network nowadays, it is common
to attach multiple NICs in one server (for the reliability
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and performance reasons), and each NIC will be assigned
to a distinct socket. NUMA effects also exist in the RDMA
network.
Hardware provided atomic operations (Section III-E). For
multi-thread/process coordination, we need atomic operations
such as compare and swap and fetch-and-add. The
RNICs can provide similar instructions as local CPUs. For
certain workloads, it is better to use such hardware facilities
instead of achieving the same goal in a software approach.

We have done a comprehensive empirical study on the above
aspects of memory semantic operations in RDMA network.
Observations verify that we can actually use similar optimiza-
tions for local memory to be used in remote memory. To this
end, we use four typical applications, including disaggregated
hashtable [3], distributed shuffle algorithm, distributed join
algorithm, and distributed log (Section IV), and then modify
them taking the considerations on the above aspects. The
improvement is promising. To summarize, this paper makes
the following contributions.
• We conduct an empirical performance analysis by evaluating

the performance of memory semantic RDMA from the above
aspects using various benchmarks.

• Using four representative case studies, we show the power
of the remote memory access design choices outlined in
our discussion. Our experiments on a cluster with eight ma-
chines show that four applications can achieve 2.7×/5.8×/
5.3×/9.1× speed-up.

II. BACKGROUND

A. RDMA Preliminaries

Memory Semantics. RDMA has two types of verbs:
memory semantic verbs (one-sided) and channel semantic
verbs (two-sided). Memory semantic verbs provides RDMA
Write/Read/Atomic (compare and swap/fetch
and add) to directly access remote memory without
remote side CPU’s involvement. Channel semantic verbs
provide RDMA Send/Recv, similar to traditional message
passing model. Both sides need to get involved during
the communication. Because memory semantic verbs post
requests directly to the remote NIC queue bypassing remote
kernel and CPU, such verbs have lower latency and high
throughput than channel semantic verbs. This paper focuses
on memory semantic verbs.
Transportation Type. RDMA supports three transportation
types: Reliable Connection (RC), Unreliable Connection (UC),
and Unreliable Datagram (UD). All transportation types sup-
port the channel semantics. For memory semantics, RDMA
Write is supported by RC and UC, but RDMA Read and
RDMA Atomic are only supported by RC. RNIC hardware
is responsible for the reliable delivery of each packet in RC.
Thus, we only discuss the RC mode.
RDMA Programming. In the programming level, queue pairs
(QP) are used. RNIC communicate with each other using
queues. There are three types of queues: send queue (SQ),
receive queue (RQ) and completion queue (CQ). SQ and RQ
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Fig. 1: Packet Throttling.

are always grouped and managed as a QP. We can post a work
request (WR) by generating a work queue entry (WQE) into
the work queue (SQ or RQ). Once a request is completed, the
hardware posts a completion queue entry (CQE) into CQ. SQ
and RQ can use distinct CQs or share a common CQ. Despite
the queues, memory regions (MR) are created and attached
to a QP. Remote protection keys (rkey) are used for a QP to
access remote memory.

B. Hardware Features related to RDMA Memory Semantics

1) Packet Throttling: As with other communication mech-
anisms, there is a limitation on the packet send rate (called
as packet throttling) in RDMA network. The access latency
(the time to transfer certain amount of data to destination)
for small payload sizes is kept steady. This phenomenon
is also observed by other researchers [50], [33], [7]. As in
Figure 1, the access latency of RDMA Write and RDMA
Read increases from 1.16/2.00µs to 1.79/2.22µs, and the
throughput is nearly identical (around 4.7/4.2MOPS) when the
payload sizes are small than 256 bytes. The access latency
increases rapidly when the payload sizes increase from 2KB.
The reason is that the performance of RNIC is limited by
both link bandwidth and execution unit throughput. Batching
can alleviate the packet throttling for small packets.
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Fig. 2: Hardware Connections.

2) RNIC Metadata Cache: Each RNIC has limited on-
device SRAM to cache necessary metadata including (1)
address translation table, (2) QP information, and (3) other
metadata caches [23], [53], [7]. The SRAM size is quite
small due to the cost and space considerations. Usually,
the commonly used commercial RNICs (e.g., ConnectX-3/4)
have in the scale of megabytes [53], [41]. Such small sizes
inevitably influence the performance from various aspects.

For the address translation table, on the translation misses,
RNIC fetches the translation entries from DRAM and replace
previous entries in SRAM. It is not surprise that with large
number of MRs, the performance will degrade greatly. We use
10× MRs, the access latency of 32 bytes drops about 60%.

The small size SRAM also influences connection perfor-
mance in the scenario with large number of connections. More
connections needs more QPs (as well as associated MRs).
Chen et al. [7] observe the throughput of file system operations
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(Stat and ReadDir) decreases by almost 50% when the
number of clients increases from 40 to 120. SRAM can only
hold a subset of QP information. When some QP information
is missing, loading/unloading QP information between SRAM
and DRAM brings a lot of overhead.

Above all, the limited capacity of SRAM in RNIC is the
root cause of poor scalability issues [53]. To some extent, such
cache architecture for metadata is similar to the CPU LLC.

3) CPU-RNIC Communication: RNICs are connected to
on-board PCIe buses. Each RDMA operation issues one of
three kinds of PCIe transaction layer packets (TLP) [26]: read
request, write request, read completion. The communication
between CPU and RNIC is initiated using memory mapped
IO (MMIO), and the data transfer is through directly memory
access (DMA). PCIe buses have a special operation mode
to improve the data transfer for buffers with scattered data
located in multiple data addresses. Scatter/Gather DMA [11]
is proposed to deal with this situation, and it is supported by
most commercial PCIe. Harnessing this underlying mechanism
can benefit the transfer of small scattered data.

4) Inter-socket Communication: Current commercial
CPUs (e.g., Intel Xeon) usually adopt the NUMA architecture,
which consists of several sockets. Under NUMA, a processor
(plugged in one socket) can access local memory much faster
than non-local memory attached to some other processors
(plugged in other sockets). Figure 2 illustrates the data ac-
cess paths between sockets. Non-local accesses bring about
40%∼150% [57] more latency depending on the number of
hops reaching destination memory module.

Such scenario also exists in RDMA network. It is quite
common that multiple RNICs will be used in a single server.
Each RNIC is associated with one socket [46]. Thus, similarly,
RNIC can access the remote memory attached to the same
socket as its corresponding RNIC in the remote machine faster
than remote memory associated with other sockets (also see
the data paths in Figure 2).

III. OBSERVATIONS ON REMOTE MEMORY ACCESS

To explore the memory semantic features of RDMA, we use
a cluster based on InfiniBand for our evaluation. The cluster
contains eight machines, each of which is equipped with dual-
socket 8-core CPUs (Intel Xeon E5-2640 v2, 2.0 GHz), 20MB
L3 cache, 96 GB memory space, and a Mellanox ConnectX-
3 Dual-Port InfiniBand NIC (MT27500, 40 Gbps). The CPU
has two sockets (named as socket 0 and socket 1) and the
memory is equally allocated to each socket. The RNIC is
installed over the PCIe link which belongs to the socket 1. An
18-port Mellanox InfiniScale-IV switch connects all of these
machines. The machines run MLNX-OFED-LINUX-4.2-1.0.0
driver provided by Mellanox for Ubuntu 14.04.

In the following sections, based on RDMA verbs, we im-
plement related benchmarks1 to explore the memory semantics
and case studies to show how to optimize applications with
memory semantic features.

1The evaluation results are averaged over ten runs.

A. Vector IO

In local memory systems, vector IO is an efficient approach
to accelerate the transmission bandwidth of PCIe [11]. When
using vector IO, a single procedure call will read data from
multiple buffers and coalesce them into a single piece of data,
or reads data from a single data and writes it to multiple
buffers. With vector IO, the number of system calls for
issuing multiple memory read/write operations are reduced
significantly. In most cases, this can improve IO performance
linearly. Similar to local memory access, remote memory also
supports vector IO. Several techniques in Algorithm 1 can
be classified as vector IO in the RDMA scenario. Note that,
only the data of small size can benefit from vector IO since
large-size data will be bound by the bandwidth of RNIC (see
Section II-B1).

 0

 2

 4

 6

 8

 10

1 2 4 8 16 32 64 128 256 512 1024 2048

T
h

ro
u

g
h

p
u

t 
(M

O
P

S
)

Size (Bytes)

Doorbell-size-4
SGL-size-4

SP-size-4
Local-size-4

Doorbell-size-16
SGL-size-16

SP-size-16

Fig. 3: Comparisons between three batch strategies, size-n
means batch size is n. (We use one-to-one connection here.)

SP: SP stands for redesigning the Software Protocol. In SP,
we exploit the packet throttling as defined in Section II-B1.
The working thread copies multiple different pieces of address
data to a temporary user-level buffer. After that, the buffer
will write to remote memory as one WR. Due to the packet
throttling for small payload sizes, if these buffers are small
enough, the latency will decrease from N RTTs to a little
larger than one RTT. However, this mechanism will consume
extra CPU resources for gathering multiple pieces of data.

Doorbell: Kalia et al [26] introduce a doorbell batch
mechanism based on PCIe. Multiple working requests can
post to RNIC with the benefit of reducing CPU-generated
MMIOs to only one. Accordingly, it can reduce the latency of
transmission trips between RNIC and memory. But Doorbell
cannot reduce network round trips (i.e., RDMA operations).

SGL: Scatter/Gather List. An SGL in the WR can coalesce
multiple different pieces of address data and send them to
one remote address via only one RDMA operation [44], [14]
— accordingly, only one MMIO and one DMA are required.
Notably, the PCIe supports transferring multiple buffers (i.e.,
scatter/gather list) at once. SGL is the most similar approach
to vector IO of local memory. Compared with SP, it assigns
the task of buffers gathering work to RNIC, not the CPU.

Figure 3 shows the performance trend of these three batch
mechanisms with increasing payload sizes (batch sizes are 4
and 16 separately). To extract the irrelevant influence factors,
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Algorithm 1: Three Batch Algorithms
/* SP */

1 for buffer in buffers do
2 memcpy(buffer, tmp buffer);
3 end
4 wr = gen rdma wr(&tmp buffer);
5 rdma write(wr);
/* Doorbell */

6 for buffer in buffers do
7 wr = gen rdma wr(buffer);
8 wr list.push(wr);
9 end

10 rdma write(wr list);
/* SGL */

11 for buffer in buffers do
12 sgl.push(buffer);
13 end
14 wr = gen rdma wr with sgl(sgl);
15 rdma write(wr);

we use a one-client to one-server model. When the payload
size is below 128 bytes, the test cases share a similar pattern
that remains almost unchanged. After that, the exception is the
Doorbell case which remains still, while the others turn into
a linearly decreasing trend as the payload size grows.
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Figure 4 illustrates the impact of different batch sizes on
the throughput in different vector IO mechanism. To compare
with local vector IO operation, we add the evaluations of
batching local memory write/read operation by using Linux
readv/writev APIs. The results show great scalability in
both SP and SGL. As an opposite, Doorbell suffers little
improvement (153%) when the batch size grows from 1 to
32. In particular, the throughput of SP grows 1.11×∼2.14×
faster than SGL and 1.16×∼13.37× compared with Doorbell.
Another observation is that batching remote memory access
scales similarly to batch access to local memory. For instance,
the highest throughput of SP (batch size is 32) can reach nearly
44%/117% of the local memory write/read.

TABLE I: Comparisons between three vector IO mechanisms.

Type Programmability Performance Scalability
DoorBell Good Low Poor
SP Poor High Good
SGL Moderate High Good in a small range

Figure 5 shows the performance with different thread num-
ber, and the thread number is from 1 to 8. The rank in
throughput is aligned with Figure 3 and 4, showing SP,

SGL, and Doorbell according to the order from high to low.
The throughput of SP is 1.05×∼1.20× higher than SGL
and 2.21×∼4.47× higher than Doorbell. Apart from this,
changing the number of threads performs little influence on
the throughput of SP and SGL. For instance, the throughput
of SGL drops from 2.27MOPS to 1.69MOPS when the number
increased to 8, with only a 25% reduction. On the contrary, the
throughput of Doorbell decreases around 60% from 1 thread
to 8 threads.
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The payload size is 32 bytes.

Discussion. Table I shows the comparisons for the three
batch methods evaluated, and we explain the details from the
following three aspects.

Programmability: For Doorbell, the required code changes
are minor, and it is only required to rewrite a few lines of code.
Although SP has a higher IOPS, its programmability is limited
and inflexible. Especially, SP needs extra configurations on the
software layer and hence requires heavy re-implementation of
applications case-by-case. Furthermore, it can just scatter or
gather multiple buffers on the one side while using remote
memory APIs. SGL has similar issues, and only the send/recv
semantics can support scatter and gather simultaneously. Thus,
even one of the vendors has a plan to extend its proto-
cols [37], processing logic on the remote memory side has
to be redesigned. The major difference between SP and SGL
is that in SP, the local memory side gathers data with CPU
involvement. Thus, SP has the most complex programming
logic and requires reconstructing applications.

Performance: In SGL, the RNIC is responsible for gathering
multiple pieces of data. On the other hand, while using SP,
the CPU will collect the data in a temporary buffer. Both
SGL and SP require to post an RDMA operation at once,
which means only one network round trip. Distinct from
the other two methods, Doorbell only reduces the overhead
from PCIe transmissions (i.e., MMIO). Thus, the Doorbell
mechanism shows a relatively low throughput, and it could
not fully utilize the potential of RDMA since the performance
is almost independent of the tested parameters. SP and SGL
have better performance than Doorbell. In particular, SP has
the highest throughput since it stresses the host’s memory
bandwidth than the PCIe bandwidth. Besides, compared with
SGL, the performance of SP is insensitive to changing the
batch size, and we attribute this to the packet throttling.

Scalability: The scalability is captured in Figure 4 and
Figure 5, Doorbell exhibits poor scalability with regard to the
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change of thread number and batch size. Our evaluation results
coincide with prior works [26]. The reason for low scalability
is that the PCIe transmissions time only constitutes a tiny
fraction of RDMA operation processing. Another observation
is that the performance of SGL will degrade seriously with
an increased payload size and therefore the high performance
only exists in a small range (less than 512 bytes).

B. Random and Sequential Access

As for local memory access, Figure 6(c) shows the differ-
ence between random/sequential read/write. In modern CPU
cache architecture, once a row is read out, all the bits are
available in the cache without having to perform another read-
out. Therefore accessing the memory within row by row (i.e.,
sequential access) would be cheaper than another full cycle
(i.e., random access). The cache module brings this benefit of
the sequential memory access in computer architecture. From
the perspectives of remote memory, this brings up the question
of whether this benefit still exists.

Figure 6(a) and 6(b) display the performance of remote
memory access via RDMA in both sequential and random
pattern. We test four different access patterns with the payload
size growing from 1 byte to 8192 bytes. If the access pattern
is random, it will choose a random address in the RDMA-
enabled memory (we fix it to 2GB) as the destination or
source. The RDMA-enabled memory is allocated from system
via posix_memalign. We could see at a glance that the
sequential access pattern outperforms random memory access,
especially in the write operations — the test case of choosing
sequential address in both source and destination sides is more
than 2× faster than others. However, as shown in Figure 6(d),
if the size of RDMA-enabled memory is less than 4MB, the
performance difference between sequential and random is little
(less than 1%). This observation illustrates that the SRAM in
RNIC could act as the cache in a memory access module to
speed up the throughput of remote memory read and write
operations. For both of the read and write operations, the
trends in different test cases remain almost stable when the
payload size is between 1 byte and 512 bytes. If the payload
size exceeds 512 bytes, the throughput would be dropped
gradually. It occurs due to the bandwidth saturation.

Discussion. A high in-chip cache miss ratio is the root cause
of the asymmetry between random and sequential memory
access. Typically, random remote access will trigger the miss
of the translation table (virtual address to physical address) in
the SRAM. Then it incurs frequent in and out of the cache in
the translation table as we mentioned in Section II-B2. The
asymmetry between the random and sequential patterns of
remote memory is smaller compared with the local memory,
whose number is 4×∼8×. The reasons are 1) there are multi-
layer (typically, three) caches in local memory, but only one
layer in remote memory, and 2) SRAM in the RNIC only
caches the translation table, not the data. In conclusion, de-
velopers should avoid remote random access in the application
design of remote memory.
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(b) RDMA Write
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Fig. 6: Comparisons between sequential and remote memory
random access with different payload size.

C. IO Consolidation

Storage systems always consolidate write/read operations in
the same memory region to reduce the overhead in hardware
and driver [22], [12]. With aggregating multiple write/read
operation, less IO are required. As we mentioned in Sec-
tion II-B1, packet throttling makes it challenging to improve
the performance of small size WR. Similar to the storage
system, we consider the IO consolidation mechanism is also
applicable to sequential remote memory access. Figure 7
illustrates the consolidation processing, these writes/read op-
erations to the same aligned memory region (S bytes) will be
delayed to post to RNIC until 1) there are θ requests which will
modify this aligned memory, or 2) time-out. So several RDMA
requests whose sizes are smaller than S can reduce from θ to
only one network round trip. Different from vector IO, which
requires to write/read multiple buffers in the remote side, by
using IO consolidation, write/read requests should intend to
access the same aligned memory region (e.g., 4KB Page).

We measure the performance of 32 bytes random write
workload using IO consolidation versus native access path
as shown in Figure 8 (the aligned page size is 1KB). After
applying IO consolidation, the throughput is significantly
higher (7.49× when θ is 16) than using native approach.

Discussion. IO consolidation is only suitable in scenarios
where extremely high throughput is required. The main sce-
nario is a skewed workload, where most requests are written
to a small range of memory areas. We can provide a “hint”
interface that users can indicate the frequency access data, and
any modifications to these remote areas will be consolidated.

For instance, burst buffer is a commonly used component
to alleviate the stress of massive IO requests, such as using
SSD as a burst buffer tier into the storage system to absorb
application I/O requests. To some extent, we can understand
this consolidating one-sided RDMA verbs approach as the
remote burst buffer.
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D. NUMA Effects

As mentioned in Section II-B4, NUMA architecture is
widely deployed in modern data centers. Under the NUMA
architecture, the asymmetry between local socket memory
access and remote socket memory access is significant, which
is a major challenge in system design [13], [27]. We evaluate
this asymmetry and show the numeric results in Table II
by using Intel MLC [21]: the latency/bandwidth of remote
socket memory access can be 43%/63% lower/higher than
local socket memory access.

TABLE II: Throughput/latency of local inter-socket access.

Type Latency (ns) BandWidth (GB)

local socket 92 3.70
remote socket 162 2.27

In a data center, each machine will be equipped with at
least one RNIC. Each NIC has one or two ports [36], which
is known as multi-port/RNIC, and each port/RNIC is bound
to one of the sockets. Previous works [43], [32] aim to benefit
from multi-ports in order to gain a high throughput — the
throughput is always linearly increasing with the number of
ports. However, the inter-socket communication is inevitable
in RDMA communication because each port/RNIC is affiliated
to an indicated socket. Accordingly, such asymmetry between
local/remote socket also exists in remote memory access
cases [8]. Even more, this phenomenon will be amplified since
the overhead is two-fold, it partly comes from RNIC to socket
in the send side, partly from socket to memory. For each
remote memory access, its end-to-end latency can be decom-
posed as: TRNIC→Socket+TSocket→Memory +TNetwork. We
name the socket where binds QP in use as local socket, and
other sockets as remote socket. In the case that QP doesn’t bind
to the local socket, TRNIC→Socket will increase due to the
overhead of inter-socket communication. However, if RDMA-
enabled memory is attached to a remote socket, the local

socket will require to access memory of the remote socket
in the same machine but eliminate the inter-socket access in
the remote machine as well.

TABLE III: Throughput and latency of remote inter-socket
access. (alt alternate memory means RNIC and core/memory
is not resident in the same socket)

Read/Write (µs/MOPS) own core alt core
own mem alt mem own mem alt mem

own core own mem 1.78/0.93 1.78/0.94 1.92/1.06 1.97/1.17
6.17/7.06 6.13/7.06 3.11/4.76 3.13/4.76

alt mem 1.79/0.93 1.79/0.94 1.94/1.07 1.97/1.17
6.15/7.06 6.15/7.14 3.11/4.76 3.11/4.76

alt core own mem 2.06/1.07 2.06/1.08 2.20/1.20 2.24/1.31
6.15/7.06 6.15/7.06 3.11/3.36 3.11/3.19

alt mem 2.16/1.17 2.16/1.19 2.30/1.32 2.34/1.43
6.15/7.06 6.15/7.06 3.17/3.30 3.13/3.19

Table III shows the diversity of latency/throughput while
the CPU core or RDMA-enabled memory resides in or not
in the RNIC bound socket. As we can see from this table,
if the RDMA-enabled memory and CPU core are attached in
the alternate socket without attaching RNIC (worst case), the
latency/throughput will be nearly 55%/49% higher/lower than
the case when all these three parts (RDMA-enabled memory,
CPU and RNIC) are in the same socket (best case). Even more,
this diversity will increase when the next generation RNIC is
available since Tnetwork will be reduced significantly. Another
observation is that the latency has no significant increase if the
memory and RNIC are in the same socket. In most cases, this
latency gap will be only 4∼10% if the memory and RNIC are
in different sockets.

RNIC

RNIC

Socket 0
Remote Mem

Socket 1
Remote Mem

Port 0 Port 1

Socket 0
Local Mem

Port 0
Socket 1
Local Mem

Port 1

1

2 3

4

5
RDMA

6

Fig. 9: Multi-port RDMA-based data access path under
NUMA arch. It also fits into the multi-RNIC scenario.

Discussion. Figure 9 illustrates the simplest two-machine
scenario in which each machine is equipped with two sock-
ets/ports, and the ports are bound to distinct sockets separately.
The data transmission can be performed in four paths: the
local/remote inter-socket memory access ( 1© 4©) and inter-
machine RDMA communication ( 2© 3© 5© 6©). As we dis-
cussed in Section II-B2, massive QPs would be the primary
reason to incur performance degradation [24], [7], so the
performance degradation is unneglected if each local socket
establishes connections with all remote sockets. For example,
all-sockets-to-all-sockets connection status requires at least
s×s×2m QPs for each socket (assume there are m machines
and each machine is equipped with s sockets). If each socket
establishes the connection with a dedicated socket, the required
number of QPs is only s × 2m ( 1s of all-to-all connections).
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Assuming the local socket 0 is responsible for a request to
access remote memory in socket 1 on the remote machine, and
the original data path is 5© which requires massive connections
(i.e., low performance) or 2© and 4©, which causes significant
remote inter-socket communication. Our strategy to handle
such remote memory access requests is using the proxy socket.
In the case of accessing remote memory in socket 1, socket 0
will assign the request to local socket 1, i.e, proxy socket ( 1©).
After that, socket 1 processes this request as usual ( 2©), and
return the data to socket 0 after finishing the data transmission.

E. Remote Memory Atomic Operation

Atomic operations play a vital role in both remote
memory and local memory. The classical application scenarios
include sequencer [9], non-blocking data structure [35] and
lock service [39], [33]. Here we compare the performance and
scalability of atomic operations in remote memory and local
memory and RPC-based implementations.
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Fig. 10: Comparisons between local/remote/RPC-based atomic
operations. (Note that solid points are back-off counterparts)

As an example, developers usually use an atomic operation
to implement a spinlock. Figure 10(a) illustrates the difference
between three approaches. We implement local/remote spin-
lock via the GCC builtin __sync_compare_and_swap
and RDMA compare_and_swap respectively. Besides, we
implement RPC-based spinlock with channel semantic verbs
(i.e., send/receive).

The remote lock has a higher throughput than RPC-based
lock, which is 1.54∼2.80× of the RPC-based lock. Besides,
the throughput of remote lock only reduces to 14% compared
to 1.2% of the local lock when the thread number increases
from 1 to 14. Due to the high contention, the throughput will
be convergence (0.33/0.31MOPS for lock/remote lock when
the thread number is eight) as the thread number increases.
To summarize, the remote spinlock based on RDMA atomic
operations can achieve better scalability than the local lock
and higher performance than the RPC-based lock.

We also improve remote spinlock with exponential back-
off strategy [4] to eliminate high contention as shown in Fig-
ure 10(a) (solid points). The exponential back-off remote lock
significantly eliminates the lock contention, which performs
2.32/3.63× higher throughput than local spinlock and RPC-
based spinlock when the machine number is 14.

We also test another instance of using atomic operation,
named sequencer, which will return a monotonically in-
creasing number for each request. Figure 10(b) shows the
performance difference between local sequencer (using GCC
builtin __sync_fetch_and_add), remote sequencer (us-
ing RDMA fetch_and_add) and RPC-based sequencer
(using channel semantic RPC). The remote sequencer exhibits
a stable performance at around 2.6MOPS when the thread
number is more than 5, which is 1.87∼2.25× higher than
RPC-based sequencer.

Discussion. Compared with other one-sided verbs such as
RDMA Read/Write, RDMA Atomic has lower through-
put, only achieving 2.2∼2.5MOPS for each RNIC port. The
RDMA atomic verbs are still essential since they could work
in coordination with the local atomic operations [56]. Despite
this, RDMA atomic operations will be more adaptable for
remote memory semantics, even though [26] shows a better
performance to implement remote lock or sequencer via UD
RPC. Apparently, one-sided verbs which cost nearly no CPU
consumption in the remote node has adaptable semantics for
applications and can guarantee reliable. If RDMA atomic
operations are not the performance bottleneck of applications,
they are recommended as the primary choice for the sake of
the benefits in reducing programming complexity as well as
the lower CPU consumption.

IV. CASE STUDY

A. Applications Classifications.

Generally, we can conclude that remote memory is lever-
aged to improve performance or system availability in three
scenarios. (I) Use remote memory as a cache to reduce
access latency, such as the front-end cache in distributed data
structures [3] and client-side cache in key-value stores [56].
(II) Replace the local disk to buffer immediate data since the
remote memory will be faster. Several classical applications
such as the join and shuffle operation will produce massive
amounts of temporary data and thus can benefit from this. (III)
Support replicating data to remote memory [52], [42], [54].
The recovery time will be short with fast migration processing.

In this section, we discuss four application scenarios to
show the capability of remote memory. These four scenarios
can be seen as classical remote memory applications of Dis-
aggregated HashTable (Section IV-B, I), Distributed Shuffle
(Section IV-C, II), Distributed Join (Section IV-D, II) and
Distributed Log (Section IV-E, III) separately.

B. Application 1: Disaggregated HashTable

As we mentioned earlier, data structures, especially disag-
gregated data structures [3], [35], [41], can gain performance
improvement from leveraging remote memory, but this is still
not well studied. Therefore, to show its power, we implement
a disaggregated hashtable as shown in Figure 11. In disaggre-
gated hashtables, request processing and storage are decoupled
to the front-end and back-end respectively. The front-end will
play a computation role to process insert/search requests and
access data in the back-end via one-sided RDMA. In the
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following, we present how to improve the performance of this
disaggregated hashtable with step-by-step optimizations.
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Fig. 11: Disaggregated HashTable Architecture.

NUMA-awareness. In our evaluation setting, each machine
is equipped with one RNIC with two ports. As with the
proposed mechanism in Section II-B4, each local socket only
establishes a connection with the matched remote socket. If a
local socket wants to access an unmatched remote socket, the
memory access request will be assigned to another matched
socket (i.e., proxy socket), which will not incur remote inter-
socket communication. After the completion of data transmis-
sion, the proxy socket will return the results to the local socket.
Generally, IPC (Inter-Process Communication) or message
passing is available for interaction between a local socket and
a proxy socket. Even so, we create two message queues in
shared memory here: one for pushing requests and the other
for pulling results by the local socket.

IO consolidation. According to recent surveys [10], the
real-world key-value workloads have a skewed distribution.
Under the skewed workloads, some entries will be accessed
frequently. Thus we can divide these keys into a hot entry area
and cold entry area. Front-end will buffer hot entries and write
them to the hot memory area as a burst buffer. According to
the value of an entry’s key, we organize these hot entries as
several blocks where each block has 2t entries. Unlike cold
entries, hot entries will write/read with block granularity. A
block will be written to remote memory when there are enough
modifications (θ) to ith block or the lease is expired.

Atomic operation. According to the discussion in Sec-
tion III-E, for cold entries, we adopt a multi-version approach
with several available versions for each key-value entry to
handle the concurrency. The writer first gets a version number
and increments its value by using RDMA fetch and add,
and then writes the data of key-value entry to the back-end
via RDMA Write. In the hot entry area, there are remote
spinlocks with the exponential backoff strategy for each block.

Firstly, We measure the optimizations with break-down. The
skewed workloads are generated according to Zipf distribution
with parameter 0.99. For 100% write workloads with 64-byte
value-size, we warm-up the hashtable by selecting frequent
access keys into the hot memory area. Figure 12 shows the
impact of different optimizations. The number of front-ends
is varied from 1 to 14, and each front-end can access any
key-value entry in the back-end. After applying NUMA-aware
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Fig. 13: The impact of re-order.

optimization, disaggregated hashtable can achieve a maximum
throughput of around 10.5MOPS which is 14.1% higher than
the baseline (Basic HashTable), mainly due to that the inter-
socket communication time is saved. By avoiding the overhead
of substantial sequential access and exploiting the characteris-
tics of packet throttling, our strategy of caching hot entries and
consolidating remote access provides a significant performance
improvement. The peak throughput is around 24.4MOPS with
six front-ends – nearly 1.85×∼2.70× higher as opposed to the
basic implementation and NUMA-aware optimizations. The
performance of IO consolidation in disaggregated hashtable is
shown in Figure 13. In Figure 13(a), throughput decreases as
the proportion of hot keys drops, but there is only around 6
MOPS drop in throughput while the proportion of hot keys
changes from 1/4 to 1/32. It is witnessed in Figure 13(b) that
the increasing rate of throughput is also not able to comply
with the growing rate of the batch size.
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C. Application 2: Distributed Shuffle

Shuffle operation is well studied in parallel data systems.
For instance, a simple query includes many sub-queries that
are replicated across the cluster. Shuffle operation is critical
component to transfer and aggregate data as well as to
combine these queries. Based on RDMA, [5] describes how
to manage RDMA-enabled buffers and distribute the data
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efficiently, and [31] presents a pull-based shuffle operation to
exploit the power of unreliable transport. Distinct from these
works, we implement a push-based model [18] since in-bound
RDMA Write has higher performance than out-bound RDMA
Read [24], [35].

For the data stream [47] based on the shuffle algorithm,
we spread the original shuffle algorithm onto a set of worker
nodes, and each node has several executors to process shuf-
fling. As shown in Figure 14, n executors will distribute data
to m executors in the next round with an all-to-all (full-mesh)
style. To start with, a shuffle rule should be decided (e.g.,
allocate entries to different nodes via each entry’s hashing
value). Each key-value entry will be sent to the corresponding
node immediately after determining its destination based on
the shuffle rule.

NUMA-awareness. Similar to the discussion in Sec-
tion II-B4, we assign each executor to a dedicated socket with
affinitive memory and RNIC port for mitigating unnecessary
inter-socket overhead.

Batch Schedule. In consideration of the fact that entries will
be distributed to different destinations, we cannot write multi-
ple entries to a particular machine’s remote memory directly.
A naive approach is to buffer these same-destination entries in
an RDMA-enabled buffer and write to remote memory at once
when reaching a threshold (i.e., SP method). However, it will
incur extra memory copying. The SGL method is appropriate
for the shuffle operation, which can reduce both memory
copy overhead and CPU involvement. While processing the
incoming entries, the local address of these entries that have
the same destination will be organized as a WR. When there
are enough entries, an executor will post them to the RNIC
via a single one-sided RDMA operation.

Atomic operation. According to the survey in Section III-E,
we choose RDMA fetch and add to implement synchro-
nization primitives between current/next stage executors, due
to that the one-sided verbs cannot be perceived by the execu-
tors in the next stage.

 0

 20

 40

 60

 80

 100

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
h

ro
u

g
h

p
u

t 
(M

O
P

S
)

Executor Number

Basic Shuffle
+SGL(Batch=4)

+SGL(Batch=16)
+SP(Batch=4)

+SP(Batch=16)

Fig. 15: The performance of shuffle.

Figure 15 presents the performance improvement of the
above optimizations. As we expected, the batch approach
shows its power to increase the throughput. To be specific,
when the batch size is 16, and the executor number is 16, the
throughput of SGL/SP is 4.8/5.8× better than basic shuffle
(without optimization). Compared with SP, using SGL to batch
remote access has a comparable effect. Another observation is
that SGL has poor scalability with larger batch sizes. As we
mentioned in Section III-A, this is because RNIC has a limited
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Fig. 16: The performance of join under different optimizations.
(θ: executor/thread number, λ: batch size)

ability to fetch data directly. On the contrary, CPU has more
power to fetch data to the buffer. Though this will bring extra
overhead, the performance will be better due to the packet
throttling (Section II-B1).

D. Application 3: Distributed Join

Join operation involves multiple shuffling phases, and we
implement join operation using shuffle operation with the SGL
method in Section IV-C. In our implementation, the join
algorithm can be subdivided into two phases: the partition
phase and the build-probe phase [6]. Especially, the partition
phase relies on the shuffle operator with RDMA involve-
ment. In the build-probe phase, each executor uses Intel TBB
concurrent hash map [45] to store the inner relation of
its partition, then probes with the tuples from outer relation.
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Fig. 17: The performance breakdown of join.
In Figure 16, we measure the performance of the distributed

join operation using a fixed-size inner/outer relation 2 , com-
posed of 16 million tuples. Figure 16(a) illustrates the change
in execution time when applying a NUMA-aware strategy
and different batch sizes. With batching, when there are four
executors, the execution time is reduced to up to 76% of the
original standalone implementation (6.46 s) and we see up to
37% reduction compared to the non-batching implementation.
On the other hand, applying NUMA-awareness optimization
reduces join’s execution time by 12%∼30%. With the SGL
batch strategy, we observe a sub-linear reduction in execution
time for the distributed join algorithm when increasing the
number of executors, as shown in Figure 16(b). When the
batch size is 16, there is only 22% performance degradation
compared to the ideal, which means SGL has better scalability
with increasing thread number. We also test the distributed join
algorithm to explore the breakdown with large workloads as

2Note that the right figure uses execution time−1 as the y axis
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Figure 17 shows. When increasing the input sizes to 4×, we
can observe that those optimizations still maintain a constant
performance reduction. In total, with all optimizations, it has
a 5.3×/10.3× performance improvement compared to native
single-machine/distributed implementations.

We evaluate the separate impact of the entries’ size and the
batch’s type on CPU consumption. The cost of CPU cycles for
SP and SGL is measured in second. We then normalize the
number of executors as seven. Besides, we use different entry
sizes which vary from 64 bytes to 4096 bytes. As shown in
Figure 18, SGL exhibits a lower CPU consumption compared
with SP. When the entry size is 4096 bytes, the cost of using
SGL is reduced by nearly 67.2%. The primary cause is that
the fetching data phase has no CPU involvement.

E. Application 4: Distributed Log

The distributed transaction supports in-memory transaction
processing through partitioning data into multiple transaction
engines, in this architecture, each transaction engine will
occupy more than one data table which can be accessed
by other engines via RDMA. The distributed log is a sub-
module of distributed transactions to enhance reliability, and
it is an append-only, totally ordered sequence of distributed
transaction records ordered by time. With the design principle
of remote memory, the whole logging phase is “one-sided”
which has a better performance and is transparent to different
transaction engines [53]. At commit time, the writer will
reserve consecutive space in the global log of the remote
machine. After that, the transaction engine can write the record
to the dedicated address in the global log via RDMA Write.
To reduce the extra memory copies to the temporary log area,
we can exploit the updated data in the data table and then
directly write it to the remote global log as the record.

NUMA-awareness. To mitigate expensive inter-socket
communication, if the data tables are in the alternative socket
memory, the transaction engine first copies the records and
coalesce them together. After that, it transfers them from
the alternative socket memory to the buffers in the NUMA-
friendly socket, and finally write (i.e., RDMA Write) to the
global log by using SP.

Batch Schedule. According to the characteristics of vector
IO, SGL can be applied to the distributed log by coalescing
multiple records from the data table and buffers in the NUMA-
friendly socket.

Atomic Operation. The consecutive space reserving stage
exploits the remote sequencer using RDMA fetch and
add. Each transaction engine can gain an independent offset of

the global log and guarantee that no conflict happens between
different transaction engines.
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As expected, after applying the NUMA-aware design, Fig-
ure 19 shows distributed log achieves 17.7MOPS while the
original one is 15.5MOPS (14% throughput improvement)
with 14 transaction engines. Also, distributed log enables
increasing throughput gains from the batch. In the 7 transaction
engines scenario, with increasing batch size, the case whose
batch size is 32 can perform 9.1× throughput improvement
than the one without batching.

V. RELATED WORKS

This paper is an in-depth analysis of the RDMA-based
remote memory access semantics, and some ideas are inspired
by recent works. However, both remote memory and how to
optimize RDMA communication are hot topics with thorough
studying. Here we introduce several most related works from
three aspects.
RDMA-Based Optimization. Herd [23] and Fasst [25] are
key-value stores based on the server reply paradigm under
UD mode. They inspire some commonly used RDMA network
optimization methods like inline and selective signal. RDMA
bench [26] introduces several optimization approaches includ-
ing Doorbell, which appears in Section III-A. Frey et al [17]
show in their analysis that the hidden overhead of RDMA is
memory registration, and hence they design a memory registra-
tion strategy. Apart from system-level approaches, some works
improve the RDMA protocol stack from flow control [20],
QoS [29] and congestion control [51] separately. We give
optimization guidelines from the view of memory semantics.
Remote Memory Trending. As mentioned in Section II, there
are many recent and ongoing efforts to explore the usage of
remote memory. Lim et al. [30] introduce a new trend of sepa-
rating computation and memory with network interconnect and
define the concept of disaggregated memory blade (i.e., remote
memory). FaRM [15] is a distributed transaction system that
exploits remote memory to achieve both low latency and
high throughput. Based on remote memory, there are several
works [16], [48], [49] that focus on optimizing shared memory
systems, transaction systems and databases. These can be
further subdivided into concurrent control [55], data-intensive
operator [28] and consensus protocol [54]. Aguilera et al. [2]
survey the research hotspots about remote memory and give
various suggestions about applying it. Remote Region [1]
rethinks the programming interface of remote memory and
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proposes file system level interfaces as the most efficient and
flexible approach. We systematically optimize four applica-
tions which can benefit from using remote memory.
NUMA architecture and RDMA. There are several works
discussing how to make RDMA-enabled clusters aware of
the NUMA architecture. Ren et al. [46] design a two-sided
RDMA-based FTP protocol which assigns each NUMA socket
to an indicated thread to handle local file IO request and
hence reduces total access latency. On the hardware side,
soNUMA [40] implements remote memory controller (RMC)
on top of a NUMA memory fabric via a stateless messaging
protocol. Recently, Mellanox/NVIDIA released a new product
called Socket Direct Adapter [38]. It can be offered as two
PCIe cards which install in two different sockets, so as to
eliminate the extra network traffic between the two sockets.
We analyze remote inter-socket access from the perspective
of eliminating the inter-socket communication.

VI. CONCLUSION

In this paper, we have empirically analyzed memory se-
mantics of RDMA. Specifically, we characterize the remote
memory access properties from five aspects: vector IO, ran-
dom/sequential access, IO consolidation, NUMA-aware ac-
cess, and atomic operations. We also make detailed evaluations
of how these factors influence performance. This work is
essential for several reasons. First, it provides comprehensive
performance results, showing features of one-sided RDMA
operations under different settings. As such, our work will
help developers utilize RDMA-enabled remote memory more
efficiently. Additionally, this study contains guidance for per-
formance optimizations in various types of modern data center
applications. The results shown in the case studies indicate
that remote memory access with RDMA is a powerful way of
improving the throughput of four applications discussed.
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