IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.2, FEBRUARY 2016 551

Top-k Spatio-Textual Similarity Join

Huigi Hu, Guoliang Li, Zhifeng Bao, Jianhua Feng, Yongwei Wu, Zhiguo Gong, and Yaogiang Xu

Abstract—With the development of location-based services (LBS), LBS users are generating more and more spatio-textual data, e.g.,
checkins and attraction reviews. Since a spatio-textual entity may have different representations, possibly due to GPS deviations or
typographical errors, it calls for effective methods to integrate the spatio-textual data from different data sources. In this paper, we study
the problem of top-£ spatio-textual similarity join (Tork-STJoiN), which identifies the & most similar pairs from two spatio-textual data
sets. One big challenge in Tork-STJoin is to efficiently identify the top-£ similar pairs by considering both textual relevancy and spatial
proximity. Traditional join algorithms that consider only one dimension (textual or spatial) are inefficient because they cannot utilize the
pruning ability on the other dimension. To address this challenge, we propose a signature-based top-k join framework. We first
generate a spatio-textual signature set for each object such that if two objects are in the top-£ similar pairs, their signature sets must
overlap. With this property, we can prune large numbers of dissimilar pairs without common signatures. We find that the order of
accessing the signatures has a significant effect on the performance. So, we compute an upper bound for each signature and propose
a best-first accessing method that preferentially accesses signatures with large upper bounds while those pairs with small upper
bounds can be pruned. We prove the optimality of our best-first accessing method. Next, we optimize the spatio-textual signatures and
propose progressive signatures to further improve the pruning power. Experimental results on real-world datasets show that our
algorithm achieves high performance and good scalability, and significantly outperforms baseline approaches.

Index Terms—Similarity join, spatio-textual join, top-k join, spatio-textual signature

1 INTRODUCTION

WITH the rapid development of mobile Internet tech-
nology, Internet users are shifting from desktop to
mobile devices. Modern mobile devices (e.g., smartphones
and tablets) are equipped with GPS, which can help users to
easily obtain their locations, and location-based services
(LBS) have been widely deployed and well accepted, e.g.,
Foursquare and Google Map Search. LBS users are generat-
ing more and more spatio-textual data which contains both
textual descriptions and geographical locations, e.g., check-
ins and attraction reviews. In user-generated data, a spatio-
textual entity may have different representations, possibly
due to GPS deviations or typographical errors [3], [18], and
it calls for effective methods to integrate the spatio-textual
data from different data sources. A spatio-textual similarity
join is an important operation in spatio-textual data integra-
tion, which, given two sets of spatio-textual objects, finds
all similar pairs from the two sets, where the similarity can
be quantified by combining spatial proximity and textual
relevancy (see Section 2.1). There are many applications in
spatio-textual similarity joins, e.g., user recommendation in
location-based social networks, image duplication detection

e H.Hu,G.Li,]. Feng, Y. Wu are with the Department of Computer Science,
Tsinghua National Laboratory for Information Science and Technology
(TNList), Tsinghua University, Beijing, China. E-mail: hhql1@mails.
tsinghua.edu.cn, {liguoliang, fengjh, wuyw|@tsinghua.edu.cn.

e Z. Bao is with Computer Science & Info Tech, RMIT University,
Australia. E-mail: zhifeng.bao@rmit.edu.au.

o Z. Gong is with Department of Computer and Information Science,
University of Macau, China. E-mail: fstzgg@umac.mo.

o Y. Xu is with East China Grid. E-mail: xu_yq@ec.sgcc.com.cn.

Manuscript received 21 Mar. 2015; revised 19 Aug. 2015; accepted 19 Sept.
2015. Date of publication 1 Oct. 2015; date of current version 6 Jan. 2016.
Recommended for acceptance by K. Chang.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TKDE.2015.2485213

using spatio-textual tags, spatio-textual advertising, and
location-based market analysis [3], [18]. For example, a
house rental agency (e.g., rent.com) wants to perform a sim-
ilarity join on the spatio-textual data of house requirements
from renters and the data of house properties from owners.
For another example, a startup company, e.g., Factual (fac-
tual.com), crawls spatio-textual records to generate points
of interest (POls). As the records are from multiple sources
and may contain many duplicates, It needs to run similarity
joins to remove the duplicates.

Bouros et al. [3] studied the threshold-based spatio-tex-
tual similarity join, which asks users to input a textual
threshold and a spatial threshold and identifies the pairs
whose textual similarity exceeds the textual threshold and
spatial distance is within the spatial threshold. However,
in some application, it is rather hard to obtain appropriate
thresholds, because a loose threshold involves a large num-
ber of answers while a tight threshold generates few
results. To address this problem, we study the top-k spa-
tio-textual similarity join (Tork-STJoN) to identify the &
most similar pairs, which avoids the process of tuning the
thresholds. In the house rental example, the agency has
overhead to take renters to show their interested houses.
Given a budget (e.g., a limited number of agents who
show houses to renters), to maximize the profit, the agency
aims to find top-k pairs where the renters in these pairs
have large possibilities to rent the corresponding houses.
In the duplicate detection example, to remove duplicated
POIs, the machine-only algorithms may introduce incorrect
results, and a widely-adopted method is to ask the human
to check these pairs [13]. However, since the crowd is not
free, it is expensive to ask every pair, and thus it aims to
select the top-k most similar pairs under a budget.

One big challenge in Tork-STJoIN is to efficiently iden-
tify the top-k similar pairs by considering both textual

1041-4347 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



552 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,

relevancy and spatial proximity. Traditional algorithms
that consider only one dimension are rather inefficient
because they have no pruning power on the other dimen-
sion. To address this challenge, we propose a signature-
based top-k similarity join framework. We first extend the
prefix-filtering technique for string similarity joins [2], [4]
to generate a spatio-textual signature set for each record
and utilize them to prune a large number of dissimilar
pairs without common signatures. Furthermore, we find
that the order of accessing the signatures has a significant
effect on the performance. So we study how to access the
signatures to achieve high performance. In particular, we
make the following contributions.

(1)  We propose a signature-based top-k similarity join
framework. To the best of our knowledge, this is the
first study on top-k spatio-textual similarity join.

(2)  We compute an upper bound for each spatio-textual
signature, propose a best-first method that preferen-
tially accesses signatures with large upper bounds
and prunes those pairs with small bounds, and
prove the optimality of our best-first method.

(3) We optimize spatio-textual signatures and propose
progressive signatures to improve the pruning power.

(4) Experimental results on two real datasets show
that our method significantly outperforms baseline
approaches, even by 1-2 orders of magnitude.

The rest of this paper is structured as follows. We define
the problem and review related works in Section 2. A signa-
ture-based framework is proposed in Section 3. Section 4.2
discusses accessing orders of signatures. We optimize the
signatures in Section 5 and make discussions in Section 6.
We report results in Section 7 and conclude in Section 8.

2 PRELIMINARIES

2.1 Problem Formulation
Each spatio-textual record r = (r.T,r.L) includes a spatial
location r.L with latitude and longitude and a textual
description 7.T = {t1,t, .. .11/} with a set of terms. For sim-
plicity, we interchangeably use r,7.T,r.L to denote the
record, its term set and its location if the context is clear.
Given two sets of spatio-textual records, a spatio-textual
join returns all similar records from the two sets. To quan-
tify the similarity between two spatio-textual records,
existing methods usually employ a similarity-based met-
ric [3], [18]. First, to measure the textual similarity, we can
adopt any textual similarity function, e.g., Jaccard and
Cosine. Here we take the well-known Jaccard function as
an example and our method can support other textual sim-
ilarity functions.

Definition 1 (Textual Similarity). The textual similarity

_|rTNnsT

between records r and s is defined as Swir(r,s) = 75T

where |r.T N s.T|is the size of set r.T N s.T.

The spatial similarity is evaluated by the spatial distance
between two records and is defined as below.

Definition 2 (Spatial Similarity). The spatial similarity between

. . _ Dist(r.L,s.L)
rand s is defined as SiMs(r, s) = max (0,1 — m), where

Dist(r.L, s.L) is the distance between r.L and s.L, and DIST

VOL.28, NO.2, FEBRUARY 2016

Records

ri: ({t,65,ts,t7,t},11(17,17))
ra: ({ta,ts,ts,ts},12(14,14))
r3: ({t,te,te,t7,ts},03(16,12))
ry: ({ts,te,tr,ts},14(5,8))
rs: ({ti,t,ta,te,ts},05(16,2))
Ie: ({t33t4’t6’t7}916(15’5))
rse ({tZ’tS,t65t7},l7(30’10))
rg: ({t27t4,t5’t67t8}918(34a4))

n; ro: ({ti,ts,t7,t8},06(22,22))
n, ol, Mg

Ise® ° Document Frequency
15. tl,tZ’tS,tAhtS’tG’thtS
(20,0) (30,0) (40,0)

(0,40)
(0,30) n, n,

°

n; ;5 Ig Ry

b
..13 l7

(0,20

(0,10

(0,0) (10,0)

Fig. 1. A running example (k = 1, @ = 0.5).

is a user-tolerant distance, which can be set as the maximal dis-
tance between any two records.

Then, we combine the textual similarity and spatial simi-
larity to quantify the spatio-textual similarity.

Definition 3 (Spatio-Textual Similarity). The spatio-textual
similarity between r and s is defined as

Svgr (7, s) = o - Stmr (7, 8) + (1 — &) - StvMs (7, 5),

where o is a tuning parameter to leverage the textual relevancy
and spatial similarity.

The larger « is, the textual similarity is more important
and vice versa. How to select an appropriate value for « has
been widely studied [11], [16]. We can utilize existing tech-
niques to set an appropriate value. In this paper we assume
a is given. Next, we formally define the top-k spatio-textual
similarity join problem.

Definition 4 (Top-k Spatio-Textual Similarity Join). Given
two sets of spatio-textual records R = {ry,...,rg|}, S=
{81,..., 815}, top-k similarity join returns a set A of k pairs
from the two sets with the largest spatio-textual similarities, i.e.,
A={(reR,se€S8)} such that Simgr(r, s) > SiMgr(r’, s') for
(r,s)eAand (r',s") € RxS—A,and |A| = k.

We first focus on the self-join problem, i.e., R = S and the
case of R # S is discussed in Section 6.

Example 1. Fig. 1 shows nine spatio-textual records, where
terms are sorted by document frequencies in an ascend-
ing order, i.e., t,...,ts. Suppose DIST,,q,; =40, « = 0.5,
k= 1. Given a record pair (r,r9) with r.T = {t1,t3,1s,
t7,t8}, ri.L = [17, 17] and rg.T = {tl,t5,t7,t8}, r9.L =

[22,22], StMr(ry, 7o) = AL — 08 Simg(ry,rg) = 1 —

(G
2 2
w =0.823 and SIMST(Tl,T'g) —0.812. The

top-1 answer is (rq, rg).

2.2 Related Works

Spatio-Textual Similarity Join. To the best of our knowledge,
this is the first study on top-k spatio-textual similarity join.
There are two works on threshold-based spatio-textual simi-
larity joins [3], [19]. Both require users to input two thresh-
olds, one for textual similarity and the other for spatial
similarity, and identify the similar pairs satisfying the two



HU ET AL.: TOP-K SPATIO-TEXTUAL SIMILARITY JOIN

T k=SIMST(r1,ra)=0 697 n, { }
ri{tyts,ts) Ta{tats  riitts
[PH tz,,ts’ rs:i{ty,t,ty rsi{to,ts}
ry{tytatel Tei{tats)  ro:{titsts}

n,/n% n; ny

ro:{ty,ts,t ri{t,ta,ts) ra{ts,tets) | | roa{t,ts,te}
i itutsto} l‘zlgtz,ts,tsi rs:{ty,ty,ta} rg:{ty,ty,ts, te}

r3:{t,tyte;  Tei{ts,ly

n;/”’nﬁ\n7 ng

;;E{‘; At} relttetl || rsftittte
21223 re:
ri:{ty,ts,t,t7} 6:113,L4516

Fig. 2. Example of signatures.

threshold-based constraints. Bouros et al. [3] combined
existing string similarity join techniques with grid parti-
tions, and we extend this method to support our problem
(see Section 7). However, their method uses separate textual
and spatial thresholds and it is hard to find approximate
thresholds for the top-k similarity join problem. Liu
et al. [18], [19] utilized spatial regions as the spatial part and
evaluated the spatial similarity based on the overlap of two
spatial regions. This problem is different from ours and can-
not be used to address our problem.

Top-k Spatio-Textual Search. Spatial keyword search [5], [6],
[9], [15], [17], [22], [26], [29], [30], [31] has been widely studied
and some works focused on top-k spatio-textual search [6],
[17], [22], [30], [31]. Cong et al. [6] combined inverted lists
with R-trees to compute top-k answers. Zhang et al. [30] com-
bined inverted index and Quadtree. We utilize them to sup-
port our problem by maintaining the current top-k answers,
deducing a bound based on the top-k answers, and pruning
dissimilar pairs based on the bound. The method is rather
inefficient as it had to find top-k answers for every record.

Top-k Spatial Join. There are some works on top-k spatial
join [7], [10], [20], [21], [24]. Corral et al. [7] computed
top-k closest pairs in a spatial database. Hjaltason and
Samet [10] recursively pushed R-tree nodes into a priority
queue from root to leaf based on an upper bound of the
minimum distance between two nodes/records. We
extend the top-k spatial join algorithms by assuming the
maximum textual similarity as one, replacing the upper
bound by combining the minimum distance and the max-
imum textual similarity and utilizing this bound to prune
dissimilar pairs.

Top-k Textual Join. Xiao et al. [27] proposed top-k string
similarity join which finds the £ most similar records using
the Jaccard function. They utilized the upper bound of
terms to determine the join order. We can also extend this
method to support our problem by computing real textual
similarity and using one as the spatial bound, and utilizing
their sum as an upper bound to prune dissimilar pairs.

Both top- spatial join and top-k textual join method only
filter dissimilar records from one (spatial or textual) dimen-
sion, but do not take full advantage of the pruning ability
on both dimensions.

Set Similarity Join. There are many works [1], [2], [4], [12],
[14], [25], [28] on the set similarity join problem, which
finds similar pairs from two sets within a given threshold.
Prefix filtering is a widely-adopted technique to address this
problem, which computes a prefix for each object such that
if two objects are similar, their prefix sets share common

553

signatures [2], [4]. However, prefix filtering only considers
the textual dimension. We extend it to support spatio-textual
data and devise signature-accessing strategies to support
top-k similarity joins. Adaptive prefix filtering [25] was pro-
posed to improve prefix filtering by using multiple signa-
tures. However adaptive prefix filtering is inefficient for top-
k joins, and we propose progressive signatures which can
address this problem efficiently (see Section 5).

3 A SIGNATURE-BASED FRAMEWORK

In this section, we propose a signature-based framework to
address the top-k spatio-textual join problem. We first intro-
duce the framework (Section 3.1) and then propose spatio-
textual signatures (Section 3.2). Finally we devise a signa-
ture-based join algorithm (Section 3.3).

3.1 Framework

To answer top-k queries, we first initialize a priority queue
Q with k randomly selected pairs. Let 75, denote the smallest
similarity of pairs in Q. Obviously we can prune the dissimi-
lar pairs whose similarities are smaller than 7. Thus we
only need to access each pair whose similarity is larger than
71, and use such pair to update Q and 7. If the similarities
of remaining pairs are smaller than 7;, we can terminate
and the k pairs in Q are the answers. An important step in
this method is to efficiently prune dissimilar pairs and iden-
tify the pairs with similarity larger than t;. To address this
issue, we propose a filter-verification framework. The filter
step generates a signature set for each record such that if the
similarity of two records is larger than t;, their signature
sets must share at least one common signature. Based on
this property, if two records have no common signature, we
prune such pair; otherwise we take the pair as a candidate.
The verification step computes the spatio-textual similarity
of each candidate. If the similarity is larger than 7, we use
this candidate pair to update Q and t;. There are two chal-
lenges in this framework. The first is to devise effective sig-
natures which will be discussed in Section 3.2. The second
is to identify the candidates with common signatures and
we propose an efficient algorithm in Section 3.3.

3.2 Spatio-Textual Signatures

Given a threshold t;, for each record r, we generate a signa-
ture set SiG(r|t;) = {(t,n)}, where ¢ is a term in r and n is a
spatial region containing r. Obviously the number of terms
contained in 7 is limited, but the number of regions contain-
ing r is infinite. To this end, we utilize hierarchical spatial
indices, e.g., Quadtree and R-tree, to control the number of
regions containing r. We use Quadtree for illustration pur-
pose and other spatial indexes will be discussed in Section 6.
We restrict regions to be tree nodes and the number of
nodes containing r can be controlled.

Our objective is to guarantee that if two records 7' and r
are similar with respect to a threshold t;, then SiG(r|t;) N
SIG(r’|71,) # ¢. In other words, if SiG(r|t;) N SiG(r'|t) = ¢,
(r,r") will not be in the top-k answers and we can prune the
pair. For example, suppose t;, = SiMgr(r1,1r9) = 0.697. Fig. 2
shows the signatures, e.g., SIG(rg|t;) = {(t2,n4), (la,n4),
(ts5,m4), {t6, 4, (t2,n0), (ts,n0) }, S1G(rolT) = {(t1,n1), (t5,m1),
<t7,n1>, <t1, TL[)), <t5, TL()), <1‘/77 n())} As SIG(TS‘Tk) n SIG(T9|T]¢,) =



554 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.2, FEBRUARY 2016

¢, (rs,r9) cannot be the top 1 answer. Obviously the smaller
the signature set is, the higher the pruning power is. Next
we discuss how to generate an effective signature set with
the smallest size for a spatio-textual record r.

For any node n containing 7, we consider two cases.

(1) n is a leaf node. In this case we only need to consider
the records in the leaf node n because if a record 7’ is outside
of n, any signature of 7 will not contain node n and thus r
and 7’ cannot share a signature with the same node n. It is
worth noting that if 7’ outside n is actually similar to r, they
should share a signature (t,n'), where n’ is an ancestor of n
(see the second case). Thus here we only consider record r’/
in n. Since r and 7’ are within this “small” leaf node, their
spatial similarity should be large. We can estimate the
upper bound of their spatial similarity as 1 and thus we get
a lower bound of their textual similarity,

‘L'k—(l—a)

LB (r|n, 7)) = (n is a leaf) (1

First, consider £B"(r|n,t;) > 0. Based on Jaccard defini-
tion, if ¢ is similar to r, |7 N 7| > LB (r|n,7;) - |7’ U 7| >
LB (r|n, 7)) - |7|. Suppose we sort the terms in all records
based on a global order, e.g., their document frequency in
ascending order. Based on such order, we define pivot terms
as below.

Definition 5 (Pivot Term). Given a threshold t,, and a record r
in a node n, we define r’s pivot terms as SiG(r|n,t;) =
{ti,t2, .. tp(rinc,) }, where

p(rn, i) = [|r.T| - (1 — LB (r|n, 7)) | + 1. (2)

For any record 7’ in node n, if ' does not contain any
pivot term of r, they cannot be similar. The main reason [2],
[4] is that there are only LB"(r|n,t})|r|—1 non-pivot terms

and 57 < SEURIIEL < 2B (rin, 7). Thus for a leaf
node n, (t;,n) is a signature for ¢ < p(r|n, t;,).

Second, consider L£B'(r|n,t;)<0. Two records may be
similar even if they do not share any common term. In this
case, we can add a virtual pivot term * and (x,n) is a
signature.

For example, in Fig. 2, consider the records {ry,rs, 73} in
the leaf node ns. For ri, LB'(ri|ns, ;) = %8902 = 0.394,
p(r1|n5, Tk;) = L5X(1—0394)J+1 = 4, SIG(T1|77/5, ‘L’k) = {tl, t37
5, t7}. Similarly, S1G(re|ns, ti) = {to,t3,15} and SiG(r3]
ns, ‘Ek) = {tl, ty, g, t7}. As SIG(?“2|TL5, ‘L'k) N SIG(T3|n5, Tk) = @,
(ra,73) cannot be the top-1 answer.

(2) n is a non-leaf node. Suppose node n has c children
ni,Na, ..., n, and r is in node n;. Since we have already con-
sidered the record pairs in n;, here we only need to consider
the records in n—n; = {ny,ne,...,ni—1,ni41,...,n.}. We
first compute the maximal spatial similarity from r to its sib-
ling n; for j # i, denoted by MaxSimMg(r, n;), and

MINDIST(r, 72)
DiST)02

MaxSiMg(r, n;) = 1 , (3)
where MINDIST(r,n;) is the minimal distance from r to
the boundary of n; which can be computed in O(1) time.
Then we estimate an upper bound of the spatial similarity
between r and records in n-n; as below.

MaxSiMs (7, 7 — n;) = max MAXSIMs (7, 1;). 4

J#i
We get a lower bound of the textual similarity of r,

LB (r|n, 1)

—(1—a)M —ni ®)
_ T (1—)MAxSiMs (r, n—1:) . (n is a non-leaf)
a

Similarly, we define pivot terms of » for node 7, i.e., the
first p(rn, 7)) = ||r.T| - (1 — LB (r|n, 1)) | + 1 terms. If (r,7”)
is in top-k answers, r and ’ share common pivot terms.

For example, consider record r, from n; which is a child
of n3. We calculate the spatial upper bound of r, for njz as
max{MAXSiMg(74,n5), MAXSIMg(ry, ng), MAXSIMg(ry,ng)} =
MaxSivg(ry, ng) = 1-455 = 0.95. We infer the textual
lower bound as LB(ry|ng, 1)) = 29052095 — (444, As
p(r4|n3,7:k) = L5 X (1 — 0444” +1=3, SIG(’/‘4‘n3, ‘Ek) = {tg,
L, t7}. Similarly, we can generate the signatures for r; from
another child ns. As p(rs|ns, 7)) = 3, SiG(rs|ns, i) = {t1, ta,
ty}. As S1G(ry|ns, Tp) N SiG(r5|ns, p) = 0, (r4, r5) is pruned.

Next we define the spatio-textual signature of r.

Definition 6 (Spatio-textual Signature). Given a threshold <y,
the signature set of r is S16(r|t,)= {(t,n)}, where (t,n) is a
signature of r, node n contains r, and t is a pivot term of r w.r.
t. nand 1.

Then, we propose the filtering technique: if a pair (r,r’) is
in the top-k answers, their signature sets must overlap. We also
prove the minimality of our signature set: if the signature set
is smaller, it misses answers.

Lemma 1. Our signature set S1G(r|ty,) is minimal: if the set is
smaller, it misses answers.

Proof. Given a threshold t;, a node n and a record r, sup-
pose its minimum pivot term set is ®, we prove
® = S16(r|n, t;;). We first prove (1) & C Si6(r|n, 7;): for
any term ¢; € ®, we can prove t; € Sig(r|n, k) no matter n
is a leaf node or non-leaf node based on the definition of
pivot term. We then prove (2) SiG(r|n, 1) C ®: for any
term t; € SI1G(r|n, 1), suppose there exists a record r’
such that +'.T = {t;,t,.1,...,t,.1}, where p= p(rn,1;)
and Dist(r,7’) =0, then we have Simgr(r,7’) > 75 and
(r,7') is an answer. To avoid missing answer, ¢; should
be a pivot term and ¢; € ®. Combining (1) and (2), we
complete the proof. O

3.3 Signature-Based Algorithm
We devise a signature-based algorithm that utilizes spatio-
textual signatures to identify top-k answers. To facilitate
identifying the pairs with common signatures (.e.,
SiG(r|ti) N SiG(r|t) # @), we build an inverted index
where entries are signatures and each signature is associ-
ated with a list of records that contain this signature. We
use L((t,n)) to denote the inverted list of signature (¢, n).
Then if r and " have a common signature (¢, n), they both
appear in L((t,n)).

The pseudo-code of the signature-based algorithm is
illustrated in Algorithm 1. The algorithm first builds a spa-
tial index using the spatial information of each record



HU ET AL.: TOP-K SPATIO-TEXTUAL SIMILARITY JOIN

(line 2), randomly selects & record pairs in a same leaf node
and puts them into a priority queue Q and gets a threshold
71, (line 3), and sorts the terms in each record by their docu-
ment frequencies in an ascending order (line 4). Next for
each record r, it identifies the nodes that contain r by locat-
ing its corresponding leaf node (line 6). Then, for each
ancestor node 7, it computes the corresponding pivot terms
based on Equation (2). For each pivot term ¢, it retrieves the
corresponding inverted list £({¢,n)) (line 8). For each record
r’ on list £((t,n)), it computes the similarity between 7’ and
7. If their similarity is larger than 7, it uses the pair (r,r')
to update Q and t; (line 11). Finally, it appends r on
L((t,n)) (line 12).

Algorithm 1. A Signature-Based Algorithm

Input:R: A spatio-textual dataset; k: top-k
Output: Q: Top-k answers
1 begin

2 Build a hierarchical tree index on R;
3 Initialize queue Q with & results;
4  Sort terms by df in an ascending order;
5 foreach record r do
6 for each identified node n do
7 Compute pivot terms set SIG(r|n, 7;,);
for each pivot term t € Si6(r|n, t;;) do
8 Retrieve L((t,n));
9 for each v’ on L((t,n)) do
10 if Stvmgr(r, 7')>1), then
11 Update Q/ty;
12 L((t,n)).APPEND(r);
13 return QO;
14 end

Complexity. Each record r has at most |r| pivot terms and
is contained in D tree nodes, where D is the depth of the
spatial index, thus the signature size of each record is |r|D.
Each signature is inserted into at most one inverted list.
Thus the total space complexity is O(>", . |r|DP). The time
complexity of accessing the signature is O3, % |7|D). The
complexity to verify candidates is O(} ) coL((t, n))[?),
where |L((t,n))| is the size of L({t,n)) and ¢, is the maxi-
mum verification cost (i.e., the maximal term number in
arecord).

4 ACCESSING ORDER

The order of accessing the records has a significant effect on
the performance. If we can first access the highly similar
record pairs, we can increase the threshold t; quickly
and prune more dissimilar pairs. For example, consider
7}, = SiMgr (71, 72) = 0.697. For 75 and r from a leaf node ng,
SIG(’I‘5|ng7 Tk) = {t17t27t4,t6} and SIG(’I‘6|’I187 Tk) = {tg, t4,t6}.
(rs,m6) should be a candidate pair as SiG(rs|ng, ) N
S1G(rg|ng, Tx) = {t4,ts}. On the other hand, if we first access
(r1,m9) and tj, = SiMgr(71,79) = 0.82, we can avoid verifying
<7‘5,T’6> as SIG(’I‘,§,|’I187 ‘L'k) = {tl,tg}, SIG(7'6|1’L87 ‘L'k) = {t3,t4}, and
Si6(rs|ng, Te) N Si6(rg|ns, i) = 0.

1. If n is a non-leaf node, we only verify 7 on list £((¢,n)) that is not
in the same child of n with r. We can easily achieve this by keeping the
child to which 7’ belongs in £((t,n)) and thus can avoid verifying the
records from the same children.

555

To evaluate different accessing orders, we model the
records and their signatures as triples (r,¢,n), where r is a
record and (¢, n) is a signature of r. Our objective is to deter-
mine the accessing orders of triples to achieve high perfor-
mance. Based on the cost complexity in Section 3.3, an
optimal accessing order is to minimize the total cost. Intui-
tively, we have three accessing strategies. (1) Textual-first:
We access the triples by sorting on term ¢. Obviously, the
term with the smallest frequency has the least probability to
match. If two records share infrequent terms, they have
large textual similarity. Following this intuition, we access
the triples sorted on terms by document frequency (df) in
an ascending order. (2) Spatial-first: We access the triples by
sorting on node n. Obviously the records in the same deep-
level node (e.g., leaf nodes) have large spatial similarity.
Thus we want to first access the triples in the deep-level
nodes. Following this observation, we access the triples by
sorting on nodes in a bottom-up manner. (3) Best-first: The
aforementioned two methods sort the triples on one dimen-
sion but cannot utilize the other dimension. To achieve high
performance, we first access the record with high possibility
to be in the top-k answers. Thus we compute a score for
each triple by considering both spatial proximity and tex-
tual relevancy, and access the triples by sorting on the score.
We discuss the details and prove that the best-first accessing
order is optimal in Section 4.1.

4.1 Best-First Accessing Order

Given a triple (r,t,n), we want to estimate the upper bound
of the similarities between r and other records. We first esti-
mate a textual upper bound. For any other record ', we
only need to consider the case that r and +’ first match on t,
because if they match on another term ¢’ before ¢, we can
use the triple (r,#,n) to find the pair. Let Pos(¢,r) denote
the order of t among all terms in r. So there are Pos(t,7) — 1
terms before ¢ in r. The maximal overlap between r and 7/

given that they first match on ¢ is |r.T| — (Pos(¢,r) — 1). Thus
_rTnrT < |7.T|—(Pos(t,r)—
T rTUlT = [r.T]
textual upper bound.

we have Simr(r, 1) U and can get a

_ [T = (Pos(t,r) — 1)

UB' ((r,t,n)) o

(6)

Obviously for i < j, UB"((r,t;,n)) > UBT((r,t;,n)), i.e., the
upper bounds for terms in the front are larger than those in
the rear. Thus for each record r, (r,t;,n) should be accessed
before (r,t;,n) fori < j.

Next we estimate a spatial upper bound. We consider
two cases. (1) If n is a leaf node, UBS((r,t,n)) = 1. (2) If n is
a non-leaf node: (2.1) If the siblings of n have no spatial
overlap with n, e.g., Quadtree and R*-tree, the minimal dis-
tance from r to the four boundaries of n, denoted by
MiINDisT(r, n), must be smaller than the distance from r to
any record outside of r, thus we can get an upper bound

UBS((r,t,n)) =1- %m; (2.2) If the siblings of n have
spatial overlap with n, e.g., R-tree, we find the nearest

descendants of n without overlap with n’s siblings, denoted
—1— MINDist(r,n'),

T — if there is

by n/, and compute UBS((r, t,n))
no such descendant, UBS((r,t,n)) = 1.



556 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.2, FEBRUARY 2016

Fig. 3. Example of winner trees.

Next we combine the spatial and textual upper bounds to
estimate a spatio-texutal upper bound.
UBST((r,t,n)) = o - UBT((r, t,n)) + (1—a) - UBS((r,t,n)).

(7)

The best-first method accesses the triples (r,t,n) sorted

by UBST((r,t,n)) in a descending order. Since there are
large numbers of triples, it is expensive to directly sort
them. To efficiently retrieve the triples in order, we build
a 2-layer winner tree [23]. At the bottom level, for each
record r, we maintain a winner tree 7, which is utilized
to compute the triple with the largest upper bound for 7.?
At the top level, we build a winner tree 7 on top of the
record winner trees (using their top triples) to identify
the triple with the largest upper bound. The top triple in
T has the largest bound. When popping a triple from 7,
e.g., (r,t,n), we get the next triple from the corresponding
bottom-level winner tree, e.g., 7,, and insert this triple
into 7. Then we adjust 7 and compute the next triple
with the largest upper bound. Iteratively, we retrieve tri-
ples sorted by the score in order.

Example 2. Consider the winner tree in Fig. 3 and records
r1, 2, T3 in a leaf node ns. For the first term ¢; of r, we

can deduce its textual bound as UBT ((r1, t1,n5)) =21 =

1 and its spatial bound is UBS((ry,t1,n5)) = 1 as ns is a
leaf node. Thus UBST((ry,t1,n5)) = 1. The top winner
tree 7 will pop (r1,t1,n5) as the first triple because it has
the largest spatio-textual bound. As (rq, ¢1, ns) is from the
bottom level winner tree 7, , its next triple (r,t3,ns) is
added into 7, . As (ri,t3,n3) has the largest bound in
7., it is popped from 7, and pushed into 7. Next the
winner tree continues to pop the triples (rs,t2,n;5) and
(rs,t1,m5). When accessing (r3, t1,ns), L({t1,ns5)) = {r}.
(ry,7r3) is verified and t; is updated as 7, = SimMgr(ry,
r3) = 0.651. For the non-leaf node ny, the spatial bound
Z/{BS(<T1, tl, TL()>) = 1—% = 0.925. Thus I/{BST (<7”17 tl, n[]>) =
0.5x140.5x%0.925=0.963. As  UBS ((rg,t1,n0)) =
0.975 > UBST((r1,t1,n0)), (re,t1,m) will be accessed

2. To facilitate finding the triple with the largest bound in 7,, we
group the triples for r by nodes. We keep a sorted triple list for each
node where triples are sorted by the upper bounds in a descending
order (i.e., the term order from front to rear). Using the first triple of
each list, we can get the triple with the largest bound of the record.

before (ry,t1,n9). When accessing (ry,t;,no), L(t1,n0) =
{rs,m9}. (r1,7r9) Will be verified and t;, will be updated as
T = SIMST(T’],TQ) = 0.812.

Algorithm 2 shows the pseudo code of the best-first algo-
rithm. In line with Algorithm 1, it still builds a spatial index,
initializes Q and gets a term order (line 2). Then it groups
the triples for each record based on nodes, builds a bottom
winner tree for each record, and uses the top triples in bot-
tom winner trees to build a top winner tree (line 3). Next it
pops the top triple (r,¢,n) from the top winner tree (line 5).
If Z/[BST(<7', t,n)) < 14, the algorithm terminates as the upper
bound is already smaller than 7;, (line 6). Otherwise, it iden-
tifies the inverted list (line 7) and for each record 7’ on the
inverted list, it computes the similarity of » and 7. If their
similarity is larger than 7y, it uses the pair (r,r’) to update Q
and 7; (line 9) and appends the record r on L({t,n))
(line 10). Next it identifies the triple with the largest upper
bound from 7, (line 11) and inserts it into 7 (line 12). Itera-
tively, the algorithm finds the top-k answers.

Algorithm 2. The Best-First Algorithm

Input: R: A spatio-textual dataset; k: top-k
Output: Q: Top-k Answers

1 begin
2 Same to Lines 2-4 in Algorithm 1;
3 Build winner tree 7, and top winner tree 7;
4  while 7 is not empty do
5 (r,t,n) =T .PeexTor();
6
7
8

ifuB°" ((r,t,n)) < t; then break;
Retrieve L((t,n));
for 'eL((t,n)), ', r in different children do
9 if SivMgr (7, ') > 11, then Update Q/ty;
10 L((t,n)).APPEND(r);
11 (r,t',n'y = T ,.PeexTor();
12 T .INnserT((r, ', n'));
13  return Q;
14 end

For example, Fig. 4 illustrates the accessing order of
the best-first method for computing top-1 answer, where the
numbers in square brackets denote the accessing order.
(r1,rs) in L(t1,n5) is the first candidate pair to be verified.
(r1,r9) is verified before some candidates in its child, e.g,
(r2,75), because the algorithm selects the triples with higher
upper bounds first. The algorithm terminates after accessing
the 45th triple because there is no triple with the upper bound
larger than 7}, (the next triple popped out from the winner tree
will be (ry,t5,n5) with UBST((ry,t5,n5)) = 0.8<17;) while
Algorithm 1 accesses 67 signatures. Thus the best-first method
can prune many unnecessary signatures.

Next we show that the best-first accessing order is the
optimal order in the signature-based framework.

Theorem 1. The best-first accessing order is the optimal order
under the signature-based framework.

Proof. According to the complexity analysis in Section 3.3,
the cost on a signature list(L((¢,n))) is determined by (1)
the number of generated (accessed) signatures, i.e.,
the number of inserted records, ¢ = |L£((t,n))|. (2) The
number of verifications between records on the list,



HU ET AL.: TOP-K SPATIO-TEXTUAL SIMILARITY JOIN

557

n, t:
t t l
(131 r5, mg | 1221 _v2ns | (191 [ e 0 [139]] F3e ﬂs l-‘li
0 o N L [
||(,|l. n3 | 132]_rs.ny |13||‘ﬁ| Tes I3
18] r3, na | 134]_rs,ng
I’l]%‘ ny
e 6T | 0 7] ] i s ]
9 To J 1361 T 1| | 110) 5, n |17 Tzenz] 1111 Fae 7 ] 1291 X i | 341 vy g | | 170wy 270w 1Sy
112 ve g | 132105 ng ] 1201 v mg | [44] rs0 my | 8_rs_|
= 37 v n
[|5| :-ﬂ: rl “Z Order-aware Pruning
& 2%
n5 |n n
3 ty &) ts
mmm o I | T mﬂ m.- |6|E I“IE
B s | 1281 1, |

Fig. 4. Example of best-first method.

¢l Next we prove that our method yields the smallest
c. We can devise infinite score functions as upper bounds
of (r,t,n). Let f; denote our function (Equation (7)) and
fi, f2,... denote other functions. Apparently, different
functions generate different accessing orders. Let ¢y, c1, . ..
denote the number of corresponding inserted records for
fo, fi,....Next we provec) < c¢;.

First, we have three facts. (1) The total number of
records that can be inserted into the list of (¢,n) is same,
which is independent of any functions and only deter-
mined by the dataset, i.e., the document frequency of ¢
among all the records in node n. We denote the total
number as C. (2) The real top-k result and t; are also
independent of the function and (¢, n), since its depends
on the dataset. (3) fo(r,t,n) < fi(r,t,n) (i > 1), i.e., our
method gives the tightest upper bound for every (t,n).
This can be proved by the fact we may miss correct top-k
answers if we utilize another function which returns a
smaller value.

Then, with these three facts, we can conclude that the
accessing process with f; must terminate earlier than
other functions. Consider fj; and any function f;. Let X
denote the rest records that are not inserted into the
list with function f;, ie., for any record re€ X,
fo(r,t,n) < 74 Similarly we denote Y as the rest records
of utilizing function f;. Now consider any arbitrary
record r €Y, we have f;(r,t,n) < 1. According to
fact (3), we have fy(r,t,n) < fi(r,t,n) < tj. Therefore, if
r € Y, we have r € X. Thus, we have Y C X. According
to fact (1), all the lists have the same total number C, and
thus wehavecy =C — |X| < ¢ =C —[Y|. O

4.2 Order-Aware Pruning

The best-first method has a good property that the upper
bound of triples keeps non-increasing, i.e., the latter triples’
upper bounds will not exceed the former triples’ bounds.
Based on this property, considering the current triple
(r,t,n) and any triple (r',¢,n) accessed after (r,t,n), we can
estimate an upper bound of the similarities between (r, t,n)
and records accessed after (r,t,n), denoted as Z/lBgT
((r,t,n)). Obviously if UBS' ({r,t,n)) < 1, we do not insert
r into L((t,r)), because the later records will not be similar
to 7. Thus we can prune many dissimilar pairs. Next we
introduce how to compute UBS ((r,t,n)). If n is a non-leaf
node, there are two cases.

Case (1). UBS((r, t,n)) > UBS((r',t,n)). We have

MINDIST (7, n)+MINDIST (7, n)
DiST)40
=UBS((r,t,n)) +UBS((r' ,t,n)) — 1,

<2.UBS((r,t,n)) — 1.

Simg(r, ') < 1—

I

Stvgr(r, 1) < BT ((r,t,n)) + (1 — ) (2UBS((r,t,n)) — 1).

Case (2). UBS((r,t,n)) < UBS({r,t,n)). Since (r,t,n) is
accessed before (', t,n), UBST ((r,t,n)) > UBST((',t,n)) and
UBT ((r,t,n)) > UBT((r',t,n)).

If [ T| - UBT ((r,t,n)) < |/ T| - UBT ((,t,n)), we have

|r. T N 7.T|
|r. T U r.T|
|r T| UBT((r,t,n))
WLl — 1| - UBT((r,t,m))

BT( /m))
uB’ ({r,t,n))

uB’ ({r,t,n))
r,t,n, — _ T .
L) BT ((r,1,m)) 2= UBT(r,tm))

S (r,7') =

<
|r.T| + \rT|

1+

Similarly if |r.T|-UB"((r,t,n)) > |r'.T| - UBT (', t,n)), we

UB (rit,n)) Thus

<7
also have Smvr(r, 1)< S B (i)

Stvgr (1, 7') < o - _UBT(frtm)

SO iy T (170 UBS({r 1)),

Finally, we can compute UB%T(O“, t,n)) as below.

uBgT ((r,t,n))
a-UBT((rt,n)) + (1—a) - (2-UBS((r,t,n))—1)

T rin
o _2?585—2(:';15,%1))) + (1—a) - UB%((r t,m)).

= max

®

Next we design a pruning technique: for each triple
(r,t,n), where n is a non-leaf node, if UB(S,)T“T, t,n)) < 1, we do
not insert r into L({t,n)).

The pseudo code is shown in Algorithm 3. It replaces
line 10 in Algorithm 2 with: computing UBZ ((r,t,n)) by
Equation (8) (line 1); if UBS ({r,t,n))>1;, appending r into
the list (line 2).



558 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.2, FEBRUARY 2016

Algorithm 3. Order-Aware Pruning

// replace line 10 in Algorithm 2
1 Compute UBZ' ((r,t,n)) based on Equation (8);
2 i UBZT((r,t,n))>1; then L((t, n)).APPEND(r);

For example, considering the 39th triple (rs,ts,n9), we

have UBS((rs,ti, o)) = 1—5 = 0.9, UBT((r3,ts,10)) = 0.8,
thus  UBZ ((rs,t1,n0)) = max(0.5 x 0.8+ 0.5 x (1.8 — 1) = 0.8,
0.5 x 32840.5 x 0.9 = 0.783) = 0.8 < 7; = 0.812. As shown
in Fig. 4 with blue marks, (r3, t4, no) (39th) will not be inserted
into £((t4,no)). Thus, although the triple (rs, 4, ng) (42th) con-

tains (¢4, ng), (s, r3) will not be verified.

5 PROGRESSIVE SIGNATURE

Given a triple (r,t,n), for each record " on L((t,n}), the sig-
nature-based method has to verify (r,r). If there are many
records on L((t,n)), the verification cost will be high. If we
can reduce the size of £((t,n)), we can further improve
the performance. To address this issue, we design a progres-
sive signature to improve the pruning power. We first
introduce the basic idea (Section 5.1) and discuss how to
incorporate progressive signatures into our framework (Sec-
tion 5.2). Then we devise an efficient algorithm (Section 5.3).

5.1 Basicldea

Given a record r, a node n, and a threshold 7, the signature
set of 7 w.r.t. n. and 7, includes (t1,n), (t2,n), ... (t,,n), where
p = p(r|n, 7;). Inspired by adaptive prefix filtering [25], if we
select ¢ — 1 more terms from 7, i.e., ¢, 1, {42, - - ., tprq—1, called
quasi pivot terms, then if 7’ is similar to r, they must share at
least ¢ pivot terms or quasi pivot terms, as proved in [25].
The basic idea is similar to prefix filtering: even if ' con-
tains all terms after ¢,;,1 of r, they are still dissimilar.
However, adaptive signatures in [11], [25] cannot effec-
tively address our top-k problem, because (1) it aims to
reduce the candidate sizes based on a given textual thresh-
old while we focus on top-k join which has no static
threshold, and (2) it generates a (p + ¢ — 1)-length prefix
such that two records are similar if their prefixes share at
least ¢ common signatures. Then it adopts a count-based
method, which scans the inverted list of signatures in the
(p + g — 1)-length prefix of r, counts the occurrence num-
bers of strings on the inverted lists, and reports the strings
with occurrence number exceeding ¢ as candidates. In
other words, for each record, it inserts all pivot terms into
inverted lists to identify the candidates. However, to incor-
porate it into our best-first method, we need to assign a
spatio-textual bound for each signature. To this end, it has

to enumerate (“g’l) possible cases (requiring to share ¢

common signatures from p + ¢ — 1 signatures), computes a
bound for each case and inserts signatures based on the
bounds. Since there are (]”g’l) cases, this method is obvi-
ously rather expensive. To address this issue, we propose
progressive signatures.

Definition 7 (Progressive Signature). Given a threshold ty,
the g-length progressive signature set of r is Si1G(r|ty,) =
{{T%,n)}, where (I'",n) is a g-length progressive signature
of r, n contains r, and T is a g-size subset of {t1,1s,...,
tprg-1}:

Then we devise a pruning technique: if two strings are
similar, they must share a common gq-length progressive
signature. Notice that we will judiciously select several sub-
sets of {t1,...,%p4q-1} as signatures. It is different from the
adaptive prefix which equally considers (”Z’l) cases. For

example, assume 1 = SiMgr(r1,79) = 0.812 and ¢ = 2. For
<r67t37n3> and <T1,t3,n3>, p(r6|n3, ‘Ek) =2 and p(r1|n3,
7;) = 2. Their (quasi) pivot terms are {t3, ts,%;} and
{t1,t3,t5} respectively. We cannot prune (r, rs) using the 1-
length progressive signature as they share a common signa-
ture (t3,n3). Our method only needs to generate their 2-
length  progressive signatures for term t3, ie.,
{<(t3, t,1), n3>,<(t3, t()'), n5>} and {<(t3, t(,), n3>} and can ignore
other terms, i.e., {t1,%4,15,45}, because their 1-length pro-
gressive signatures only share t; and their 2-length signa-
tures must contain this term. As there is no common 2-
length signature, we prune (r,76).

There are two challenges to support progressive signa-
tures. The first is to incorporate progressive signatures into
our framework. The second is how to select signatures and
decide q. We prefer to select the terms with long lists into
signatures in order to improve the pruning ability. To deter-
mine ¢, if ¢ is small, the pruning power is limited (e.g.,
q = 1); if q is large, it involves large cost to generate the sig-
natures. To make a tradeoff, we propose effective techni-
ques to judiciously generate signatures.

5.2 Supporting Progressive Signatures

For each triple (r,t,n) popped from the top-level winner
tree, we first verify (r,7’) for each record 7' on L({t,n))
and then check whether (t,n) is valid (we will discuss
the details later). If yes, we still use (t,n) and insert r
into L((t,n)); otherwise, we use the 2-length progressive
signatures of (t,n): ((¢t,ti41),n), ((t,tiv2),n), .. ((t,tp1)s
n), where ¢t =t;. It is worth noting that for all records
that contain the signature (t,n), including the records in
the current list £((t,n)) and those accessed after (r,t,n),
we also need to use their 2-length progressive signatures
because (t,n) is not a wvalid signature. Thus we split the
existing list L((t,n)) and insert records in L({t,n))
into inverted lists of 2-length progressive signatures of
(t,n). Then we use these inverted lists L£({(¢,;),n)) for
jeli+1,p+1] (instead of L((t,n))) to identify candi-
dates (i.e., the pairs on these inverted lists).

There are two challenges in the framework. First, how to
decide whether (¢,n) is valid and whether we should use
progressive signatures? We propose a cost-based method.
We should compare the cost of two methods: (1) still using
(t,n) to identify candidates for records accessed after r; and
(2) using ((t,tiv1),n), {(t, tiy2),n), ..., {(t,tp11), n) to identify
candidates for records accessed after 7.

The first method needs to verify (1) the candidate
pairs between the records in the current list £({¢,n)) and
the records after r and (2) the candidate pairs between
records after r. Suppose N ({t,n)) is the number of
records in n having (t,n) as a signature.” The number of
candidate pairs is

3. N'({t,n)) is hard to compute. We can utilize the number of records
containing ¢ in node n, i.e., df(t,n), to estimate N'((¢, n)).



HU ET AL.: TOP-K SPATIO-TEXTUAL SIMILARITY JOIN

N({t,n) V() -1)
2
9)
[£((E n) (£ n))| 1)
5 .
The verification cost for verifying r and r' is |r| 4+ |r/| which
can be estimated by the average term number, denoted by
Avg,. Thus the total cost is

|CAND,_;| =

CosT,—1((t,n)) = 2Avg,|CAND;—1 . (10)

The second method generates 2-length progressive sig-
natures for every record with (¢,n) as a signature, uses the
2-length progressive signatures to identify candidate pairs
for each record after r, and verifies the candidate pairs. The
total cost is computed as below.

CosT,_o({t,n)) = |{t, T2, n) N ({t,n)) + 2Avg,|CAND,|, (11)

where |(r, T2, n)| is the average number of 2-length progres-
sive signatures of each record generated from (t,n) and
|CAND,—5| is the number of candidates using the 2-length

progressive signatures. |(r, T/Q\,n)| can be estimated based
onrecords in L({t,n)), i.e.,

> rec((tny) P(r|n, 7)) — Pos(t,r) + 1
[L({t,n))] ’

which can be easily computed and materialized when
verifying the pairs in L((t,n)). CAND,—» is a subset of
CAND,—; which contains the pairs of records with more
than two (quasi) pivot terms. Suppose [L7*({t,n))]
denotes the number of record pairs with more than two
(quasi) pivot terms in L£((t,n)), which can be computed

and materialized when verifying the pairs in £((¢,n})). As
\£(<tsn>>\~(\§(<t=n>)—1\)

[(r, T2, )| ~

there are candidates in the current list

L({t,n)) and among them [£>*((¢,n))| pairs have more
than two common (quasi) pivot terms, we can get a ratio.
As there are totally |CAND,—;| candidates using 1-length
signatures, with the above ratio we estimate |[CAND _|:

>2
|CAN1),]:2|:| |L=2((t,n))|

EC S T] (12)

- |CANDy—1 |.

If Cost,—1((t,n))) > Cost,—2((t,n)), (t,n) is not valid any-
more. We use the 2-length progressive signatures of (¢, n);
otherwise we still use 1-length signatures. Generally, for an
arbitrary signature (7, n)(q > 2), we can also compute the
cost forgand ¢ + 1,

Costy((T9,n)) = 2Avg,|CAND,|,

— (13)
Costy1 ((T9,n)) = |(t, T, n)|N((T7, n))+2Avg, [CANDy 1.
Both |Canp,| and |CAND,;1| can be similarly computed
as Equations (10) and (11). The only difference is that we

need to estimate N ((T% n)) ~ N ((T? !, n) %, where

Te7! is the subset of 77 by deleting the last term. If
Cost,((T7,n)) > Costy1((T9', n)), we continue to split
the inverted lists of (1%,n) and use (I, n) as signatures.
Otherwise we still use (1'%, n) as progressive signatures.

559
[43] | ra,t3,n5 L(tsny)
| ren; Candidates
>
Method 1 <r;,rg>
> [20]| Tg, Ng Results
? <Izl'c>
1371 Ty, D5 Candid
andidates
Method 2 g=1] <y, T2 n>={<ty,ts>}

L((t;,t9),n3)={r,,ns}
L((t;,t9,n3) L((1515),n5) L((tste)ns) L((tst7),n3)

I's, Ng Iy, Ns

Iq, Ny | I4, Ny

I, Ng

Fig. 5. Example of using progressive signatures.

Example 3. Consider £(t3,n3) in Fig. 5. We assume (ry, t3, n3)
and (rg,t3,n3) have been accessed and (ry,ts,n3) is the
next triple (37th). It accesses L((t3,n3)) and verifies (r4, 1)
and (rg,71). Next we estimate the cost of the two methods
with Equations (10) and (11). N (t3,n3) =4, Avg, = 4.5
and |L(t3,n3)| =3. Using Equation (9), |CAND,|=

453 _3x2 — 3. The cost of the first method is CosT,—1 = 2 x

4.5 x 3 = 27. For the second method, |(r, T2, n3)| = e
2

1.67. |CAND s |= 2UL2(tgm)| |CAND,_| = 2L x 3 =
o 9=217" TL(3,n3)[- (£ (E3,m3) 1) =1 7 3x2

1. CosTy—y = 1.67 x 4 +9 = 15.68. As CosT,—; > CoST,—o,
we use 2-length progressive signatures. As
StMsr (71, 79) = 0.812, p(r4|n3, T1;) = 2 and the 2-length pro-
gressive signatures of r; generated from (t3,n3) are
<(t37 tﬁ)a TL3>, <(t37 t?)v n3>'

Next we show the pruning power of progressive sig-
natures using the next triple (ry,t3,n3) (43th). The first
method accesses L((l3,n3)) and gets two candidate
pairs (r4,m2) and (rg,r9) (r1 is not a candidate as r; and
ro are from the same child of nj3, i.e., ns). Thus the first
method verifies two candidates and checks 7 + 7 terms.
The second method generates a progressive signature
for T2, <(t3,t5),n3). As L(<(t3,t5),n3>) = {7’1}, <T’4,7’2>
and (rg,r2) are pruned. The second method creates pro-
gressive signatures for 7y, 76, 7, T2 by scanning
2+ 2+ 1+ 1 terms and its verification cost is 0 (no can-
didate). Thus the second method (using progressive sig-
natures) is much better.

T —

The second challenge is how to use the progressive signa-
tures to identify candidates (if is not valid) for a new triple
(r,t,n). To address this issue, we can use a hash table ¢ to
keep the invalid signature. If (¢,n) is not in ¢, (t,n) is still
valid and we retrieve the list of (¢,n); otherwise, we use
g-length progressive signatures where ¢ = ¢((t,n)). We use an
iterative method to generate q-length signatures for r: first
generating 2-length signatures ((¢;,t;11),n), ((ti, tizo),n), ...,
((ti,tps1),m) for ¢ =2, t; = ¢ and then using (¢ — 1)-length
signatures to generate g¢-length signatures. If ((¢;,1;),n)
exists in ¢ (i.e, a previous record has generated this signa-
ture), we use ((t;,t;1;),n) to generate ((¢;,t;yj, tirjr1),n), -- .,
((ti,tiyjs tpr2),n) for g =3; otherwise, we do not need to
extend it and retrieve the inverted lists to identify candidates.

5.3 Progressive-Signature-Based Algorithm

We devise a progressive signature based algorithm similar
to Algorithm 2. We first initialize a spatial index, priority
queue Q, and the winner trees. Then we peek the triple
from the top winner tree. If (¢, n) is in g, this signature is not



560 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.2, FEBRUARY 2016

valid and we generate ¢-length signatures; otherwise, (t,n)
is valid, and we still use (¢, n). For each signature, we retrieve
the inverted list, and for each record ' on the list, we verify
the pair. Next we compute UBZ' ((r, T%,n)) based on Equa-
tion (15) and if L{B%T(O", T9,n)) > 1, we compute Cost, and
CosTyqy. If Costy > Costyyi, we split the existing list
L((T1,n), generate the (¢ + 1)-length signatures and insert
them into inverted lists; otherwise we append the record
into current inverted list. Finally we update the winner tree.

Estimate Upper Bound L{B%T(O", T, n)). Suppose the last
term in 77 is ¢;. If 7' shares a signature (T, n) with r, they
share ¢ terms among the first j terms of r. As there are
|r.T| — j terms after ¢;, the textual upper bound is

(T =g)

Z/ll’j’T(<7“7 T n)) ]

(14)

The spatial bound for each term in 7 is the same and thus
UBS ((r, T, n)) = UBS((r, tj,n)). So we can get the overall
spatio-textual upper bound as below.
usg' ((r, 7% n))
OlUBT(<T7 Tqa n))+(170t) (2 ’ Z/[BS(<T7 Tl]’ n>)71)

uB' ((r,T9n,
S (1=a) - UBS((r, T, ).

= max
(15)

6 DiscussION

Spatial Index Selection. To evaluate the spatial ability of an
index, we sum up the average spatial upper bounds of all
the records as the following function.

Z’IL\TEWL MAXSIMS (/r.7 n — TLL)

[n]

Spatial Bound = Z

r€ER

; (16)

where n is an ancestor of r and |n| is the number of 7" ances-
tors. We aim to select the spatial index with the minimum
Spatial Bound. As we use hierarchical spatial indexes, we
only compare two well-known hierarchical indexes, Quad-
tree and R-tree. Quadtree will be better in our method,
because there exist lots of nodes with overlaps in the R-tree
index, and for these overlapped nodes, MaxSivmg(r, n — n;)
is equal to the largest value 1. Therefore, the bound of R-
tree is looser than that of Quadtree, and accordingly R-tree
has larger cost than Quadtree. We also verify this observa-
tion by experiments as discussed in Section 7.4.

R #S8. We generate the spatio-textual signatures for
each dataset. For each (t,n), we maintain £%((¢,n)) for R
and £5((t,n)) for S. The pairs on the two inverted lists
(LR((t,n)) x L5({t,n))) are candidates.

Out-of-Core Setting. A common approach for the case that
the dataset cannot be loaded into memory is to partition the
dataset into small partitions, use our algorithms to compute
the answers on the small partitions, and then combine these
answers to generate the final results. Based on this idea, we
can devise disk-based or MapReduce-based algorithms [8].
However, in this paper we focus on the in-memory setting
and leave devising disk-based or MapReduce-based algo-
rithms as a future work.

TABLE 1

Datasets
Datasets # Records Avg # terms # Distinct terms
Twitter 1M 17.1 400 K
POI 1M 52 556 K

7 EXPERIMENT

We have conducted extensive experiments to evaluate the
efficiency and scalability of our methods.

7.1 Experimental Setup

Datasets. We used two real datasets: Twitter and POI, as
shown in Table 1. The Twitter dataset was collected from
twitter.com, which had 1 million tweets with locations. The
POI dataset was crawled from factual.com, where the aver-
age term number was 5. We merged ten POls into one
record and generated 1 million records.

Baselines. We extended five methods to support our prob-
lem. (1) Threshold-based spatio-textual join algorithm PPJ-C
[3]. As PPJ-C only supported separate spatial and textual
thresholds, we extended it with two different strategies. (7)
PPJ-C-A: we extended it by decreasing the thresholds with
step 0.05 and terminated until getting top-k answers. (i)
PPJ-C-B: we used a priority queue to keep the current top-k
answers and deduced a bound. Then we built a hierarchical
grid index. For each grid level, we used PPJ-C [3] to compute
the results, which joined the eight neighbor grids for each
grid. We accessed the grids in a bottom-up manner. Notice
that we needed to infer a textual threshold for each grid,

which was computed as 7; = T"'_(l_+)'u5‘“<g>, where UB;(g) is
the spatial upper bound of the grid: U/B,(g) = 1 if the grid is a

LENSIDE(g)
bt » where LENSIDE(g)

is the length of the side of ¢'s child grid4 and DisT,,,, is a user-
tolerant distance (see Section 2.1). (2) Top-k spatio-textual
search ILQ [30](see Section 2.2). (3) Spatial-first methods, we
accessed close records in two manners, (i) SpatialFirst: the
bottom-up manner (see Section 4.2). (i7) SpatialFirst-Il: the
top-down manner [10] (see Section 2.2) (4) Textual-first
method TextualFirst [27] (see Section 4.2). As TextualFirst
was better than similarity join methods [27], we only com-
pared with TextualFirst.

Setting. All the algorithms were implemented in C++.
We used Quadtree for spatial index and inverted lists for
textual index for all methods. We terminated to split a
Quadtree node if it contained less than 50 K records. We
used the in-memory setting. All the experiments were
run on a computer with 40 GB RAM, Intel Xeon CPU
2.93 GHz, running Ubuntu.

leaf grid; otherwise UB,(g) = 1 —

7.2 Evaluation on Accessing Orders

First, we evaluated the effect of different accessing orders
of signatures. We compared four methods, SpatialFirst,
TextualFirst, BestFirst and BestFirst+, where BestFirst+

4. Given a grid, PPJ-C computes its results from its eight neighbour
grids. As we have computed results from its child level, the minimal
spatial distance is the length of side of a grid in its child level.



HU ET AL.: TOP-K SPATIO-TEXTUAL SIMILARITY JOIN 561
36000 SpatialFirst 3 5600 SpatialFirst 3 800 SpatialFirst 4 1600 SpatialFirst 4 A
S5000 [TexualEirst Ss000 [TexualEirst . [TextualFirst -& — TextualFirst -4 /A
:/5 BestFirst ez :,5 BestFirst ez » BestFirst A » BestFirst
o BestFirst+ o) BestFirst+ 3600 | BestFirst+ A 31200 | BestFirst+ .
Sa000 4000 £ £

[ s
23000 33000 5400 ; 800 £
@ @
L2000 22000 2 3 +
° ° ©200 © 400 s |
51000 51000 w A + w o
3 S ol o e . 5 )
0 0 0 100 1000 10000 0% 100 1000 10000
k k k k

(a) Varying k (Twitter)

(b) Varying k (POT)

(c) Varying k (Twitter) (d) Varying k (POTI)

’§‘8000 ’E“BOOO

SpatialFirst = BestFirst &= SpatialFirst —=  SpatialFirst == SpatialFirst 4 T P VAS
A9 TextualFirst BestFirst+ TextualFirst estFirst+ TextualFirst -& Spanangrsz A,
= = BestFirst @ extualFirst
©6000 ©6000 BestFirst+ 3 1200 BestFirst +
Qo Qo £ BestFirst+ A
£ 7 € A A A = X
24000 g 24000 a 5 800 , a
o 0 o) A ?
© % © - Q .
©2000 g ©2000 a © 400 5 8 +
S / k<l i [ S
5 = 3 o B -
S o % S o gém o . moE% 0

.3 OA5 0.7 0.9 3 . . 7

U, 0

(e) Varying a (Twitter)

(f) Varying o (POI)

1600 1600 —

0.3 0.5 0.7 0.1 0.3 0.5 0.7 0.9
o o

(g) Varying o (Twitter) (h) Varying o (POI)

1
36000 SpatialFirst = E\GOOO SpatialFirst = 800 SpatialFirst A 600 SpatialFirst A A
= TextualFirst - TextualFirst TextualFirst A TextualFirst & A
25000 BestFirst == 25000 | “BestFirst == BestFirst A @ BestFirst /
o BestFirst+ o) BestFirst+ \q—;GOO BestFirst+ A 5/1200 BestFirst+ A
84000 84000 g Dk & g
23000 23000 ;400 A ; 800 ﬁ/'
o} o] .

o) o) a / b
2000 2000 fo% v Q +
3 3 00| A © 400 A + o
S1000 S1000 w & + + w e N
S | S L e ﬁ E OO s R | $ - F_"l o
O o= 4 O o= 0 0 -

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

Number of Records(x1M)

(i) Scalability (Twitter)

Number of Records(x1M)

(j) Scalability (POT)

Number of Records(x1M)

(k) Scalability (Twitter)

Number of Records(x1M)

(1) Scalability (POT)

Fig. 6. Evaluation on accessing orders (default values: k£ = 10,000, «=0.5, and |R| = 1M).

enabled order-aware pruning in BestFirst (Section 4.2).
We were aware of three parameters that had impact on
the efficiency, i.e., k, «, and the size |R| of a dataset.
When we varied one parameter, others were set as default
values: k = 10,000, « = 0.5 and |R| = 1M. We reported the
numbers of candidate pairs in and elapsed time in Fig. 6,
where the candidates referred to record pairs verified.

We had the following observations. (1) Among all the
parameters, BestFirst always outperformed TextualFirst
and SpatialFirst because TextualFirst and SpatialFirst
accessed signatures with priority on only one dimension,
which leaded to many more candidates than BestFirst. For
example, for Twitter in Fig. 6i, when |R| = 11, BestFirst
verified 7610 candidate pairs while TextualFirst and
SpatialFirst involved 4,000M candidates. BestFirst also
improved the elapsed time from 600 seconds to 130 seconds
as shown in Fig. 6k. (2) BestFirst+ further reduced the
candidate number by skipping unnecessary signatures.
BestFirst+ outperformed BestFirst by 30-50 percent. (3)
With the increase of parameter £, all of these methods gen-
erated more candidates and took more time, because a
larger k involved more answer pairs which leaded to a small
7, and thus many pairs cannot be pruned. (4) Parameter o
can affect the efficiency of TextualFirst and SpatialFirst.
When o = 0.9, SpatialFirst took more than 1,000 seconds on
POI. This is because SpatialFirst preferred to access pairs
with close distance, and a large « indicated the spatial prox-
imity was rather small (even negligible) compared to the
textual relevancy. On the contrary, TextualFirst had worse
performance when o was small. BestFirst kept stable perfor-
mance because it considered both the spatial and the textual

factors. (5) With the increase of numbers of records, the cost
increased because more candidate pairs were generated.
However, BestFirst got the slowest growth rate compared
to SpatialFirst and TextualFirst. This is attributed to the
tighter bounds of BestFirst, which can prune many more
dissimilar pairs.

7.3 Evaluation on Progressive Signature

We evaluated our progressive signature Progressive (the
method utilizing progressive signatures in Section 5), and
compared it with BestFirst+ and Adaptive (extending [25] by
enumerating its signature combinations and accessing the
combination in order as discussed in Section 5). Fig. 7 shows
the efficiency and the candidate number with signature
number, where the white (shaded) bars are the number of
generated signatures (candidates). We had the following
observations. First, Progressive always outperformed
BestFirst+ and Adaptive, because progressive signatures can
significantly improve the pruning power and generate fewer
signatures. For example, when |R| = 1M, BestFirst+ verified
495 millions of pairs on Twitter while Progressive reduced
the number to 186 millions. Progressive also reduced the
time to 45 seconds from 78 seconds of BestFirst+. Second,
although Adaptive can also reduce the number of candidates,
it generated large numbers of signatures® and it was rather
expensive to access large numbers of signatures. For exam-
ple, when |R| = 1M, Adaptive generated 1,045 millions sig-
natures on POI and got 259 millions of candidates while

5. The cost of generating signatures for Adaptive included retrieving
signatures with largest bounds from the winner tree.



562

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.2, FEBRUARY 2016

s =

3 500 Adaptive & 3 1200 Adaptive & 120 Adaptive 500 Adaptive <

5 Bestirst+ 5 BestFirst+ & Bestirst £ = BestFirste £} 2

£ 400 Progressive mmm £ 900 Progressive mmm & 9 Progressive -l > 5 400 | Progressive -l 0

% 300 B E /B £ 300

2 2 600 = 60 % -

5 200 > I3 /. m & 200 m

7] 7] <% Var Q

K - S 300 I 30 ar 3 -

§ 100 % S i =) w 100 "

£ o === L] g 0 = 0 i % 0 '

8 10 100 1000 10000 & 10 100 1000 10000 10 100 1000 10000 10 100 1000 10000

K K K K
(a) Varying k (Twitter) (b) Varying k (POTI) (c) Varying k (Twitter) (d) Varying k (POI)

s 5 120 500

S 500 gmpive = Progressive m g 1200 Adapive T Progressive o

5 BestFirst+ H BestFirst+ w @ 400 ol ) o

£ £ 900 o %0 s O [ & o

2 2 £ & o E 300 =

) ° = 0 ~0 = =)

2 2 600 o 0 ° -

5 5 g e | gaoo; Mo m .

g 2 =

2 g 300 = 30 Adaptive © = 100 Adaptive & u

3 3 BestFirst+ BestFirst+ {1

° ° o o L_Progressive, | | o LP | |

8 ) 8 01 03 05 07 09 01 03 05 07 09 01 03 05 07 09
o o o o

(e) Varying o (Twitter) (f) Varying « (POT) (g) Varying a (Twitter) (h) Varying o (POT)

s s

% 500 rAgpive = Progressive mm % 1200 —Zgapive == 120 —Zgapive 8 Progressive M 500 —xgapive 8 Progressive W

5 BestFirst+ 5 BestFirst+ . BesFirst+ . BesFirst+

8 8 Progressive mmm » @ 400 <

5 E > 9 o > 5 - o

E 2 £ - o] E 300 <

3 3 = P = = - P}

g g o 60 © % ° - ,"

S = o} I @ 200 < e u

k=) i=) 7] 7] P

@ @ Q. Q. p - -

2 2 g0 g g S0t @ ..

g g i [ w -

3 3

5 - 5 0 0

S 02 04 06 08 1 S 02 04 06 08 1 02 04 06 08 1 02 04 06 08 1

Number of Records(x1M) Number of Records(x1M)

(j) Scalability (POT)

(i) Scalability (Twitter)

Fig. 7. Efficiency evaluation on progressive signatures (default values: k =

Progressive used 190 millions of signatures and got 495 mil-
lions of candidates. Third, with the increase of %, the candi-
date number and elapsed time of Progressive grew slowly
than BestFirst+ and Adaptive. Fourth, different «’s have
influences on Progressive. Progressive performed better and
had larger pruning power for a larger «, because if o was
large, the textual similarity was more important and the pro-
gressive signatures played a significant role. Fifth, with the
increase of dataset sizes, the growth rates of efficiency and
the candidate number of Progressive were smaller than
BestFirst+ and Adaptive, due to the better pruning power of
progressive signatures, which utilized more (quasi) pivot
terms to prune dissimilar pairs.

7.4 Comparison of Quadtree and R-Tree

We compared different spatial indexes, Quadtree and R-
tree. We used the progressive signature based method, var-
ied the numbers of records, and set k and « as default val-
ues. The elapsed time and the spatial bounds (see
Equation (16)) are shown in Fig. 8. We can see that Quadtree

Number of Records(x1M) Number of Records(x1M)

(k) Scalability (Twitter) (1) Scalability (pOI)

10,000, @ = 0.5, and |R|=1M).

was twice better than R-tree. This is because Quadtree had
much tighter spatial upper bounds with Equation (16),
which resulted in less candidates. For example, when
|R| = 1M, the average Spatial Bound of Quadtree on Twit-
ter was 0.773 (i.e., the average spatial upper bound for
each record was 0.773), while the corresponding spatial
upper bound for the R-tree index was 0.881. The smaller the
value is, the tighter the upper bound is. Thus Quadtree was
better than R-tree. Since Quadtree had tighter bounds than
R-tree, Quadtree generated fewer signatures and achieved
higher performance. For example, Quadtree generated 196
millions candidates and took 45 seconds while R-tree gener-
ated 360 millions candidates and took 82 seconds.

7.5 Comparison with Baselines

We compared our method SigJoin (enabling progressive sig-
natures in BestFirst+) with six baselines ILQ, PPJ-C-A,
PPJ-C-B, TextualFirst, SpatialFirst and SpatialFirst-1l. Fig. 9
showed the results. We had the following observations.
(1) ILQ had the worst performance because ILQ was a

Riree 77

160

500

. . Rtree 2 Rtree J Rtree J
= Quadtree = s Quadtree = — Quadtree ‘I — Quadtree I
— 08 — 08 2 £ 400
= = & 120 o O
2 o0s 2 os E E 300 ’
S S F o lE
o o - 80 i kel
D 04 D 04 ] | @ 200 -
.« o o 40 P o ]
= = [5] . ©
8 0.2 8 0.2 o e " o 100
2] 2
0 0
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

Number of Records(x1M) Number of Records(x1M)

(a) SpatialBound (Twitter) (b) SpatialBound (POTI)

Fig. 8. Comparison of Quadtree and Rtree (default values: k = 10,000, « =

Number of Records(x1M) Number of Records(x1M)

(c) Elapsed Time (Twitter) (d) Elapsed Time(POTI)

0.5).



HU ET AL.: TOP-K SPATIO-TEXTUAL SIMILARITY JOIN

563

ILQ + PPJ-C-A SpatialFirst 4 SpatialFirst-1l -& TextualFirst & PPJ-C-B ¥ SigJoin ‘&

10 o+ 104 1 + + + T 10* . T +
R — . e
v - X X X X >< X w ; X X X
1%t 4+ * x D10%t aa 1%t *

£ ) B £
= A = e LA S = XAl
Z10? Z10? Q02| &

[} [} [}

§ « . § [ - | E— - § - - e ™
w 10 ;' , o 10 Do ™

-
10 100 1000 10000 01 03 05 07 09 02 04 06 08 1
k o Number of Records(x1M)
(a) Varying Parameters on Twitter

ILQ + PPJ-C-A X SpatialFirst -4 SpatialFirst-1l & TextualFirst -a PPJ-C-B ¥

10* N 10t T Vi - + 10*
. . M . A+
2 2 a P — 2 % x
_05’103 + _2103 & e g e _2103 N -
= = [T N = W‘,..«xﬂ*ﬁ'
2102 2102 Rl Q02 W m
17 é 17 17} L
g s o -
w 10 v w 10 w 10

10 100 1000 10000 01 03 05 07 09 02 04 06 08 1
k o Number of Records(x1M)
(b) Varying Parameters on POI
Fig. 9. Comparison with baselines (default values: k = 10,000, « = 0.5, and |R| = 1M).
TABLE 2
Index Size

Datasets ILQ PPJ-C-A PPJ-C-B TextualFirst SpatialFirst SigJoin

Twitter 1.6 GB 0.9 GB 0.92 GB 0.75 GB 1.3GB 1.18 GB

POI 45 GB 1.49 GB 1.52 GB 1.47 GB 3.8 GB 3.52 GB

search-based method, which needed to scan each record to
find top-k answers. (2) PPJ-C-B, TextualFirst and
SpatialFirst, SpatialFirst-1l and BestFirst+ were better than
PPJ-C-A, because it was rather hard for PPJ-C-A to deter-
mine appropriate thresholds and PPJ-C-A had to perform
multiple similarity join operations for different thresholds
and involved many duplicated computations. (3)
SpatialFirst, SpatialFirst-1l and PPJ-C-B achieved similar
performance as all of them verified record pairs based on the
priority of spatial distance and PPJ-C-B computed the
results in a bottom-up manner using the hierarchical grid
index, which was a variant of the spatial-first based method.
(4) SigJoin significantly outperformed other methods with 1-
2 orders of magnitude, because (a) SpatialFirst, SpatialFirst-II
and PPJ-C-B did not optimize the textual pruning and
TextualFirst did not optimize the spatial pruning, and they
utilized loose upper bounds to find top-k answers, which
would verify many pairs of records with large spatial simi-
larities but small textual similarities or with large textual
similarities but small spatial similarities. On the other hand,
SigJoin chose the verification order by considering both the
textual and spatial dimensions, which made t;, increase most
quickly and pruned most dissimilar pairs; (b) SigJoin uti-
lized progressive signatures to enhance the pruning power.
(5) When varying parameter «, SigJoin kept a more stable
performance than other methods, because SigJoin could pro-
gressively estimate a tighter bound to prune dissimilar pairs.
(6) With the increase of number of records, SigJoin scaled
much better than other methods, because SigJoin estimated
a tighter bound and had more powerful pruning.

Index Size. Lastly, we evaluated the space cost of different
methods. As illustrated in Table 2, PPJ-C-A and TextualFirst

had the least space cost because they did not use any spatial
index and this was also why they had poor performance.
PPJ-C-B also had small space cost because we cleared up
unnecessary indexes of lower-level girds once we moved to
the upper levels. SigJoin involved less space than ILQ
because ILQ utilized all the terms to create the index while
SigJoin used a subset of terms, i.e., pivot terms. SigJoin was
better than SpatialFirst because SigJoin accessed smaller
numbers of signatures than SpatialFirst, which can save
much space cost. The index sizes on POI were larger than
those on Twitter for all the methods because POI con-
tained more terms in each record (see Table 1).

8 CONCLUSION

We proposed a signature-based framework for top-k spatio-
textual similarity join. We discussed different accessing
orders of signatures proposed a best-first method, and
proved the best-first accessing order is optimal. We pro-
posed progressive signatures to improve pruning power.
Experimental results showed that our method significantly
outperformed baselines.

ACKNOWLEDGMENTS

This work was supported by 973 Program of China
(2015CB358700), and the NSF of China (61422205, 61472198),
YETP0105, Tencent, Huawei, the “NExXT Research Center”
funded by MDA, Singapore (WBS:R-252-300-001-490), FDCT/
116/2013/A3, MYRG105(Y1-L3)-FST13-GZG, National High-
Tech R&D (863) Program of China (2012AA012600), and
the Chinese Special Project of Science and Technology
(20132x01039-002-002).



564

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.2, FEBRUARY 2016

REFERENCES

[1]

[2]
[3]
[4]

[5]

[6]

(7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

A. Arasu, V. Ganti, and R. Kaushik, “Efficient exact set-similarity
joins,” in Proc. 32nd Int. Conf. Very Large Data Bases, 2006, pp. 918
929.

R.J. Bayardo, Y. Ma, and R. Srikant, “Scaling up all pairs similarity
search,” in Proc. 16th Int. Conf. World Wide Web, 2007, pp. 131-140.
P. Bouros, S. Ge, and N. Mamoulis, “Spatio-textual similarity
joins,” Proc. VLDB Endownment, vol. 6, no. 1, pp. 1-12, 2012.

S. Chaudhuri, V. Ganti, and R. Kaushik, “A primitive operator for
similarity joins in data cleaning,” in Proc. 22nd Int. Conf. Data Eng.,
2006, p. 5.

L. Chen, G. Cong, C. S. Jensen, and D. Wu, “Spatial keyword
query processing: An experimental evaluation,” Proc. VLDB
Endownment, vol. 6, no. 3, pp. 217-228, pp. 2013.

G. Cong, C. S. Jensen, and D. Wu, “Efficient retrieval of the top-k
most relevant spatial web objects,” Proc. VLDB Endownment,
vol. 2, no. 1, pp. 337-348, 2009.

A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilako-
poulos, “Closest pair queries in spatial databases,” in Proc. SIG-
MOD Int. Conf. Manage. Data, 2000, pp. 189-200.

D. Deng, G. Li, S. Hao, J. Wang, and ]. Feng, “Massjoin: A mapre-
duce-based method for scalable string similarity joins,” in Proc.
Int. Conf. Data Eng., 2014, pp. 340-351.

I. D. Felipe, V. Hristidis, and N. Rishe, “Keyword search on spatial
databases,” in Proc. 24th Int. Conf. Data Eng., 2008, pp. 656—-665.

G. R. Hjaltason and H. Samet, “Incremental distance join algo-
rithms for spatial databases,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 1998, pp. 237-248.

H. Hu, Y. Liu, G. Lj, J. Feng, and K. lee Tan, “A location-aware
publish/subscribe framework for parameterized spatio-textual
subscriptions,” in Proc. IEEE 31st Int. Conf. Data Eng., 2015,
pp. 711-722.

Y. Jiang, G. Li, J. Feng, and W. Li, “String similarity joins: An
experimental evaluation,” Proc. VLDB Endownment, vol. 7, no. §,
pp- 625-636, 2014.

G. Lamprianidis, D. Skoutas, G. Papatheodorou, and D. Pfoser,
“Extraction, integration and exploration of crowdsourced geospa-
tial content from multiple web sources,” in Proc. 22nd ACM SIG-
SPATIAL Int. Conf. Adv. Geographic Inf. Syst., 2014, pp. 553-556.

G. Li, D. Deng, ]. Wang, and J. Feng, “Pass-join: A partition-based
method for similarity joins,” Proc. VLDB Endownment, vol. 5, no. 3,
pp. 253-264, 2011.

G. Li, J. Feng, and J. Xu, “Desks: Direction-aware spatial keyword
search,” in Proc. IEEE 28th Int. Conf. Data Eng., 2012, pp. 474-485.
G. Li, Y. Wang, T. Wang, and ]. Feng, “Location-aware publish/
subscribe,” in Proc. 19th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, 2013, pp. 802-810.

Z. Li, K. C. K. Lee, B. Zheng, W.-C. Lee, D. L. Lee, and X. Wang,
“IR-tree: An efficient index for geographic document search,”
IEEE Trans. Knowl. Data Eng., vol. 23, no. 4, pp. 585-599, Apr. 2011.
S. Liu, G. Li, and J. Feng, “Star-Join: Spatio-textual similarity join,”
in Proc. 21st ACM Int. Conf. Inf. Knowl. Manage., 2012, pp. 2194—
2198.

S. Liu, G. Li, and ]. Feng, “A prefix-filter based method for spatio-
textual similarity join,” IEEE Trans. Knowl. Data Eng., vol. 26,
no. 10, pp. 2354-2367, Oct. 2014.

S. Nobari, F. Tauheed, T. Heinis, P. Karras, S. Bressan, and A.
Ailamaki, “Touch: In-memory spatial join by hierarchical data-ori-
ented partitioning,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2013, pp. 701-712.

S. Qi, P. Bouros, and N. Mamoulis, “Efficient top-k spatial dis-
tance joins,” in Proc. 13th Int. Symp., 2013, pp. 1-18.

J. B. Rocha-Junior, O. Gkorgkas, S. Jonassen, and K. Nervag,
“Efficient processing of top-k spatial keyword queries,” in Proc.
12th Int. Symp., 2011, pp. 205-222.

S. Sahni, Data structures, algorithms, and applications in c++. Univ.
Press, NJ, USA, 1999.

H. Shin, B. Moon, and S. Lee, “Adaptive multi-stage distance join
processing,” in Proc. SIGMOD Int. Conf. Manage. Data, 2000,
pp. 343-354.

J. Wang, G. Li, and J. Feng, “Can we beat the prefix filtering?: An
adaptive framework for similarity join and search,” in Proc. SIG-
MOD Int. Conf. Manage. Data, 2012, pp. 85-96.

D. Wu, M. L. Yiu, G. Cong, and C. S. Jensen, “Joint top-k spatial
keyword query processing,” IEEE Trans. Knowl. Data Eng., vol. 24,
no. 10, pp. 1889-1903, Oct. 2012.

[27]

[28]

[29]

[30]

[31]

C. Xiao, W. Wang, X. Lin, and H. Shang, “Top-k set similarity
joins,” in Proc. IEEE 25th Int. Conf. Data Eng., 2009, pp. 916-927.

C. Xiao, W. Wang, X. Lin, and J. X. Yu, “Efficient similarity joins
for near duplicate detection,” in Proc. 17th Int. Conf. World Wide
Web, 2008, pp. 131-140.

M. Yu, G. Li, T. Wang, J. Feng, and Z. Gong, “Efficient filtering
algorithms for location-aware publish/subscribe,” IEEE Trans.
Knowl. Data Eng., vol. 27, no. 4, pp. 950-963, Apr. 2015.

C. Zhang, Y. Zhang, W. Zhang, and X. Lin, “Inverted linear quad-
tree: Efficient top k spatial keyword search,” in Proc. IEEE 29th
Int. Conf. Data Eng., 2013, pp. 901-912.

D. Zhang, K.-L. Tan, and A. K. H. Tung, “Scalable top-k spatial
keyword search,” in Proc. 16th Int. Conf. Extending Database Tech-
nol., 2013, pp. 359-370.

Huiqi Hu is currently working toward the PhD
degree in the Department of Computer Science,
Tsinghua University, Beijing, China. His research
interests mainly include spatio-textual data query
and spatial database.

Guoliang Li received the PhD degree in com-
puter science from the Tsinghua University, Bei-
jing, China, in 2009. He is currently working as an
associate professor in the Department of Com-
puter Science, Tsinghua University, Beijing,
China. His research interests mainly include data
cleaning and integration, spatial databases, and
crowdsourcing.

Zhifeng Bao received the PhD degree in com-
puter science from the National University of Sin-
gapore in 2011. He is an assistant professor in
the RMIT University, Australia. His research inter-
ests is generally to build database systems and
query models so that they are truly usable, which
in particular include exploratory search over
social network data, XML data, relational data,
and spatial data.

Jianhua Feng received the BS, MS, and PhD
degrees in computer science from the Tsing-
hua University. He is currently working as a
professor in the Department of Computer Sci-
ence, Tsinghua University. His main research
interests include large-scale data management
and analysis.

Yongwei Wu received the BS and MS degrees
from the Lanzhou University, and the PhD degree
in Chinese Academy of Science. He is a profes-
sor in the Department of Computer Science,
Tsinghua University. His research fields include
distributed computing, storage systems, and big
data analysis.



HU ET AL.: TOP-K SPATIO-TEXTUAL SIMILARITY JOIN 565

Zhiguo Gong received the PhD degree from the
Department of Computer Science, Institute of
Mathematics, Chinese Academy of Science,
China. He is an associate professor in Faculty of
Science and Technology, University of Macau.
His research fields include database systems
and web mining.

Yaoqiang Xu received the PhD degree from the
Department of Computer Science, Tsinghua Uni-
versity, China. He is an engineer in East China Grid
company, Shanghai, China. His research fields
include database systems and big data analysis.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


