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Abstract

A cooperative platform called Cova is presented, which aims to uniformly model a

wide range of cooperation scenarios and to reduce the groupware design and development work. To

achieve these goals, Cova provides two facilities, namely a specification language for developers to

describe various cooperation modes uniformly and a run-time system that provides some general-

purposed services guaranteeing the semantics specified. With these facilities, the developers can
then concentrate on the application specific functions rather than the control mechanisms. There-
fore, the development efficiency is promoted. This paper details the design and implementation

issues of the platform including the model and the specification language, platform architecture,

transaction management, service integration and so on. Application development with Cova plat-

form is also covered.

Keywords

1 Introduction

Progress made in computer networks has re-
sulted in many new applications, among which
is computer supported cooperative work (CSCW).
Due to its potentials in improving group work
efficiency, CSCW has received much attention.
As a result, numerous groupwarell and meta-
groupwarel? systems have been invented. Though
these systems do greatly facilitate people’s cooper-
ation, their applicability is limited as most of them
are designed only for supporting a specific cooper-
ation mode (e.g., single user activity, synchronous
or asynchronous cooperation). Studies on people’s
everyday life have shown that people often cooper-
ate in hybrid mode, which means different modes
are deployed at various scenarios even within the
same application.

Research experience on CSCW shows that a
language support is necessary to deal with the
flexibility and complexity required by CSCW sys-
tems. As a result, Coval® is proposed, which aims
to uniformly model a wide range of cooperation
scenarios and give system developers the maxi-
mum flexibility while minimizing their endeavors
in groupware design and development. To achieve
these goals, Cova provides the following facilities.

CSCW, Cova, transaction model, service integration, XML

1) A specification language for developers to de-
scribe various cooperation semantics.

2) A run-time system providing various general-
purposed services that guarantee the semantics
specified by the specification language.

3) A set of APIs for developers to access the
services supplied by the run-time system.

Compared with other meta-groupware systems
such as COCAM, GroupKitl®!, Rendezvous!® and
MMConf!l”, Cova has the following distinguished
features.

1) Cova is based on a uniform coordination
model which makes it capable of describing a wide
range of cooperative processes, e.g., synchronous,
asynchronous, autonomous, and integrated ones.
This capability is short in other meta-groupware
systems with WoTell® as an exception.

2) Object-oriented paradigm is used to describe
a cooperative process with a clear separation and
seamless integration of the computation and coor-
dination parts. The coordination part of Cova has
full knowledge about the semantics of the computa-
tion part, which makes the system able to do some
advanced control which otherwise is impossiblel®!.

3) Cova bridges the gap between process model-
ing and instance enactment. Information produced
during runtime is encapsulated as special objects
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Speed Network Based CSCW Application and Development Environment) of Tsinghua University.
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that can be used in process definition. In this way,
extra flexibility can be obtained.

4) Cova is more scalable in the sense that it
takes interoperation and service integration into
account from the very beginning. Legacy or new
services can be introduced into the system easily
according to the requirements of application.

This paper details the philosophy inside Cova
design and implementation. The rest of the pa-
per is organized as follows. In the coming sec-
tion, we explain the formal model and the corre-
sponding specification language. Then implemen-
tation issues are depicted in Section 3. Section 4
demonstrates the cooperative application develop-
ment based on the facilities provided. At the end
of the paper, conclusion is made and future work
is also presented.

2 Formal Model and Specification Lan-
guage

Cova is a complete programming model’® in
the sense that it provides both the computation
model and the coordination model. This section
looks into the formal model and the specification
language.

2.1 Object Model

Cova object model is a modified version of
the one defined in the ODMG Specification 2.0.
It supports inheritance, polymorphism, encapsu-
lation, and nested or local class definition. Cova
object model provides 10 primitive types, namely
Boolean, byte, char, tiny, short, int, long, float,
double and void, and 5 collection types, namely
set, bag, list, array and dictionary (see the ODMG
specification for their semantics). With these
types, users can specify the structure and opera-
tion semantics of the objects handled by activities.
In other words, the object model provides a type
system for coordination.

2.2 Coordination Model

Cova coordination model consists of two ba-
sic concepts — process and activity. They play a
role similar to that of workflow model in workflow
management systems. Process, which describes the
properties of all stages of a cooperation scenario, is
the basic organization unit in Cova. Its formal def-
inition is as follows.

Definition 1 (Process). A process is a 4-tuple

(pid, A, M, s), where
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e pid is the name of the process, and it is unique in
the system;

o A is a set of activities belonging to this process;

e M is a set of users and/or computer programs that
can manage the process;

e s € A is the start activity name. The start activ-
ity will be created first when the process is instantiated.
It acts as process entrance. Fach process should have a
start activity. As for process exit, it is implied by the
rules in activity definition. A process can have more
than one exit.

An activity is a piece of work that contributes to
the cooperation. It has its goal, life cycle and rules
regarding state transition and interaction with the
environment. The formal definition of Cova activ-
ity is as follows.

Definition 2 (Activity). An activity is a 6-
tuple (aid,t,d, pc, P, R), where

® aid is the name of the activity. It is unique within
a process.

e { is the activity type. It can be atomic or com-
posite. For a composite activity, it has its own internal
structure as that of processes. The introduction of com-
posite activity makes it possible to hierarchically define
process and thus enhances flexibility.

e d is the type name of the object manipulated by
the activity (called activity object, denoted by o). It is
defined by the object model and describes how the data
are organized and how operations are implemented. It is
through d that the computation and coordination parts
of Cova are seamlessly integrated.

® pc is the precondition placed on the activity. The
corresponding activity object cannot be manipulated un-
til pc is met. Whenever the internal state of an activity
or a process changes, pc will be evaluated.

e P is a set of users and/or computer programs that
can access the activity object.

e R is a set of rules that specify what action should
be taken upon the occurrence of a specific event. Fach
element of R has a form of (e, c, a), where c is a Boolean
expression defined on an activity or a global object and
a 18 an invocation to a method defined on an object.
When an event e occurs, if the condition c is met, the
action a will be executed. Rules in our system are di-
vided wnto three categories. They are as follows.

o Time-related rules, which reflect the time
constraints imposed on activities. For example, an
activity should report its status 2 hours after start.

o Method invocation rules, which specify the
way in which variables are accessed. For erample,
method My must be executed before My is executed.

o State transition rules, which specify the de-
pendencies among activities. For example, activity
Ay will not start until Ay aborts/completes.
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The introduction of rules makes it possible to
describe both control and data flows among differ-
ent activities and thus asynchronous cooperation is
supported. In addition, rules of the activity model
are optional, i.e., an activity may have no rules or
rules of a certain type. Without rules specified,
an activity alone can describe (depending on the
number of participants) a single user activity or
synchronous cooperation. It is the activity model
that makes our system capable of describing differ-
ent cooperation modes uniformly.

Compared with other models, Cova coordina-
tion model has the following distinct features be-
sides the uniformity!®!.

e It has a loose mathematical structure, which
imposes less limitations on how various activities
are related while maintaining equal, if not more
powerful, expressiveness.

o It is oriented to a process being enacted rather
than a process template. Thus, information gener-
ated dynamically during process enactment can be
used in process modeling. In this way, flexibility is
enhanced.

e It allows hierarchical process definition as ex-
plained above.

2.3 Specification Language

Many coordination-oriented languages and
models!? adopt the idea to separate the compu-
tation and coordination parts to achieve portabil-
ity and to support heterogeneity. Cova also favors
this idea. As a result, the specification language
is divided into two parts, namely Cova Object De-
scription Language (CODL in short) and Cova Co-
ordination Description Language (CCDL in short).

CODL implements the Cova object model, that
is, it provides the language constructs for describ-
ing the structure of activity object and specifying
its methods. Quite similar to other object-oriented
programming languages such as Java and C++, the
basic unit of CODL is class definition. Besides the
traditional components (e.g., variable declaration,
assignment, exception handling, flow control and so
on), the following four additional components are
defined for collection query and manipulation.

e foreach (... in...), a statement used to navi-
gate through an object of collection type.

e insert/insert into ... {at ...} values ..., a
statement used to insert new elements into an ob-
ject of collection type. For collections with index
(i-e., list, array and dictionary), the clause “at---”
can be specified.

e delete ... where ..., a statement used to
delete from a collection the elements that satisfy
the condition supplied.

e update ... ., a statement used to
update certain elements in a collection.

All components make CODL a fully-featured
object query and manipulation language capable
of describing a wide range of objects.

CCDL provides the language constructs for de-
scribing cooperation scenarios. It is the innovative
part of Cova language. Similar to CODL, CCDL
also adopts object-oriented paradigm. The syntax
for a process is as follows:

ProcessDeclaration ::= process IDENTIFIER [ex-
tend IDENTIFIER] [start IDENTIFIER]

ProcessBody

ProcessBody ::= ‘{’ [ProcessFieldDeclarations] ‘}’

ProcessFieldDeclarations ::
tion [ProcessFieldDeclarations]

where ..

= ProcessFieldDeclara-

ProcessFieldDeclaration
::= Modifiers {ProcessDeclaration | ClassDecla-
ration | ActivityDeclaration}

A process declaration begins with the keyword
process followed by a unique IDENTIFIER as its
name. A process can optionally inherit (specified
by keyword extend) from another process (called
super process), whose name is specified by the
IDENTIFIER following the keyword extend. The
start activity of a process is specified by the key-
word start and the following IDENTIFIER. Pro-
cess designers are free to specify the start activity.
With no one specified, the start activity will be
the first one declared in the process. Within the
process body are definitions of classes (in CODL),
nested processes or activities (in CCDL). A nested
process is also a process, but it is invisible out of
the process where it is defined.

There are two activity types in our system and
thus, activity definitions have two relevant forms.
The syntax for composite activity is as follows,
where the first IDENTIFIER is the given name of
the activity and the second one the name of a pro-
cess (called sub-process), which can be defined lo-
cally or globally.

ActivityDeclaration ::= activity IDENTIFIER as
IDENTIFIER';

Composite activity provides another way to
process reuse besides process inheritance. For in-
stance, designers can predefine some standardized
domain-specific processes and invoke them within
other application-specific processes when needed.
In this way, much work can be saved. What’s more,
system flexibility is also enhanced.
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The syntax for atomic activity is given below.

ActivityDeclaration ::= activity IDENTIFIER
[handle IDENTIFIER] [startwhen Expression]

ActivityBody

ActivityBody ::= ‘{’ [ActivityFields] ‘}’

ActivityFields ::=ActivityField [ActivityFields]

ActivityField ::=
gerDeclaration

ParticipantDeclaration | Trig-

From the rules above, we can see that an atomic
activity can be divided into a header and a body.
The activity header consists of three parts. The
first part includes the keyword activity and an
IDENTIFIER, which specifies the name of the ac-
tivity. The second part is an optional handle clause,
which specifies the class name (via the second
IDENTIFIER) of the activity object. The third
part is an optional startwhen clause, which specifies
the condition (given by Expression) under which
the activity becomes active. Within the activity
body is a set of activity fields, which specifies who
can access the activity object (via ParticipantDec-
laration) and how the activity communicates with
the others (via TriggerDeclaration). The syntaxes
of ParticipantDeclaration and TriggerDeclaration
are as follows and we will not explain them in de-
tails due to space limitation.

ParticipantDeclaration ::= users MemberDeclara-

tions ¢’

MemberDeclarations ::= MemberDeclaration [‘,’
MemberDeclarations]

MemberDeclaration ::= Expression

TriggerDeclaration
= trigger [IDENTIFIER as] Actions Event-
Declaration [where Expression] ¢;’

::= MethodCall [‘,” Actions]

In the first section, we have mentioned that
Cova bridges the gap between process modeling and
instance enactment by encapsulating information
produced during runtime as special objects. These
special object variables are listed below.

e An object called process and of type CPro-
cessInstance (defined in Cova library). This vari-
able represents a current running instance of a pro-
cess. One can manipulate the running instance us-
ing this object.

e Activity object corresponding to an atomic
activity. An activity object has the same name as
the activity and its type is specified by the IDEN-
TIFIER following the keyword handle (refer to ac-
tivity declaration above).

e Activity instance object. This object is of
type CActivitylnstance (defined in Cova library)
and its name has the form AX.activity, where AX
is the corresponding activity name.

Actions
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With the above variables, some complex con-
straints can be specified during build time. For ex-
ample, we can easily specify that the participants
of activity A, are the same as those of A; by adding
the following statement to the body of As.

users A;.activity.GetParticipants();

3 Platform Implementation

Based on the formal model, we have imple-
mented a general platform, which can be used to
develop cooperative applications. In this section we
will examine the platform architecture and some
advanced topics such as synchronous cooperation
support, transaction management and service inte-
gration.

3.1 Platform Architecture

CSCW applications cover a wide spectrum and
each application may have its own specific require-
ments. In addition, systems may evolve as time
goes on. So as a platform, it must take these into
account. Thus, we devise the platform architec-
ture as illustrated in Fig.1. It is based on Cova
run-time system with two additional components,
namely Interface Services and Supporting Services.
The whole platform forms three layers and they are
explained as follows.

1. Interface service layer

This layer externalizes the functionalities of
Cova run-time system and makes it possible to de-
velop applications based on the platform. Services
in this layer are explained below.

e Worklist manager: it is used to manage
workitems (e.g., retrieve all workitem names, add
a new workitem to or remove an existing one from
the worklist of certain users).

e Workitem handling: it is used to fulfill various
tasks (e.g., create a new instance of some process,
terminate a process instance, and open an activity
object).

e Instance monitor: it is used to track the co-
operation progress.

e Process manager: it is used to maintain (save
or delete) process or class definitions.

e System configuration: it is used to configure
the platform.

These services are supplied to developers as a
set of APIs similar to workflow application pro-
gramming interfaces recommended by Workflow
Management Coalition (WfMC). With these APIs,
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Worklist Workitem Instance Process System
manager handling monitor manager configuration
— — —
Cova run-time system \
T
| Development support |
Directory Request Transaction [ I
service dispatcher manager Definition || Configuration
Message bus manlager manlager
Access Activity Replication | | Concurrency XML
\ control control control control mediator
/ Supporting services \
| Service bus
[ [ |
Database Email Meeting Other legacy
service service service services

Fig.1. Cova platform architecture.

developers can develop new applications using the
services provided by Cova run-time system.

2. Cova run-time system layer

This layer is the core of the platform. It pro-
vides various general-purposed services that imple-
ment complex cooperation control mechanisms and
guarantee the cooperation semantics specified by
the Cova specification language. Services in this
layer are glued together via “message bus”, which
takes messages produced by one service and then
forwards them to the appropriate input message
queue of the other services. Below are functions of
some services. As for functions of the other ser-
vices, please refer to [3].

e Activity control: it is in charge of creation,
activation, deactivation, synchronization and ter-
mination of activities as well as message exchange
between them. It is activity control service that
enables asynchronous cooperation of relatively long
duration.

e Replication control: in real implementation,
Cova adopts fully-replicated architecture. The pur-
pose of replication control is to maintain the con-
sistency of replicas when they are opened, closed
or saved dynamically by multiple users and/or ap-
plications.

e Concurrency control: it is used to maintain
the causal dependencies among operations and the
logical-equivalence of the results produced at differ-
ent sites under fully-replicated architecture. The
algorithm adopted is 0odOPT[!! which utilizes
operation semantics to transform the operations

before executing them. This is possible because
the coordination part of Cova has full knowledge
about the semantics of the computation part as
mentioned in Section 1.

o XML mediator: it aims to tackle data in-
consistency issue resulted from heterogeneous plat-
forms and different software vendors during system
interoperation and service integration. We will ex-
amine it later in this section.

e Transaction manager: it is responsible for co-
ordinating all running activities and guaranteeing
data integrity. It is the key to support mission-
critical applications.

e Definition manager: it maintains process re-
lated information (e.g., process, class or user defi-
nitions), which provides the basis for cooperation.

e Configuration manager: it is used to main-
tain system configuration information such as ser-
vice access point, available underlying services and
so on. With this service, we can tailor the platform
to adapt to specific applications.

e Request dispatcher: it receives user requests
as well as external events and then dispatches them
(via message bus) to appropriate modules to han-
dle.

3. Supporting service layer

This layer is exploited to meet the requirements
on application specific functions and system evolu-
tion by integrating application-specific services or
deploying new ones. It is an open layer in the sense
that new services can be added to and existing ones
can be removed from it (via system configuration
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service). Various (legacy or new) services are ac-
cessed uniformly via a “service bus”, which works
in the way similar to that of ORB in CORBA ar-
chitecture. Service integration issues are detailed
later in this section.

A platform constructed in this way has the fol-
lowing features.

e It can reduce the application development
work based on the specification language, APIs and
services supplied because the specification language
provides constructs for describing cooperation sce-
narios, the services implement the complex coop-
eration control mechanisms, and the APIs make it
possible to access the services.

e It can adapt to system evolution and wide
application demands by service integration.

3.2 Synchronous Cooperation Support

It has been mentioned previously that Cova can
support both synchronous and asynchronous coop-
erations. While asynchronous cooperation is en-
abled by activity control, synchronous cooperation
is enabled by replication and concurrency control.
In this section, we will examine how it is accom-
plished.

In real implementation, to reduce response time
as well as to increase reliability, Cova platform
adopts a fully-replicated architecture that consists
of a centralized server and fully replicated clients.
Users use Cova client to access activity objects
stored at the server. The outstanding feature of
Cova client is that it provides object replication
and concurrency control mechanism, which makes
it possible to support synchronous cooperation.
Replication control algorithm automatically repli-
cates the latest activity object state to local site.
It also ensures that all involved clients have iden-
tical copies at the end of the procedure. Below is
shown the replication control procedure for opening
an object.

Algorithm 1. Replication Control Procedure
for Opening an Object

Input

oid: Id of the activity object to open
sid: Id of the site issuing the request

Output

True: If the object is opened successfully
False: Otherwise
{ if (oid is not found) //mno such an object
return False;
if (oid has been opened) {//join the session
r <— the real-time session corresponding to oid;
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foreach (s € S;) //synchronization
Send STOP_SENDING_REQUEST to s;
Wait for STOPPED from each s € S,; //end of

//synchronization
Retrieve latest object state from some s € S,.;
Send class definition and latest object state to
sid;
Wait for OBJECT_CONSTRUCTED from sid;
S, + S, + {sid};

}

else { //Object is not opened, so create a new

//session
Create a real-time session 7;

Send the class definition and object state to sid;
Wait for OBJECT_CONSTRUCTED from sid;
Sy + {sid};

}

foreach (s € S;) //restart
Send RESTART to s;

return True;

}

The replication control procedure for saving or
closing an object is similar to the above except that
there is no need to send the latest state to client.
In addition, we should point out that the presented
procedure has been simplified with no considera-
tion of exceptions. At the end of replication control
procedure, all clients have the identical copy of the
object. After that, each participant manipulates
the local copy independently. To achieve aware-
ness, operations generated at each client are also
multicast to the other clients. During this process,
00dOPT provides the function to keep the consis-
tency of these replicas and the results produced by
the same operation at different clients. In this way,
synchronous cooperation is well supported. Here
we should point out that replication control pro-
vides a good basis for oodOPT, which will not pro-
duce correct results if the original object copies are
different.

3.3 Transaction Management

As organizations get increasingly dependent on
the cooperative systems to carry out their daily
activities, it becomes an important issue to keep
the system reliable and thus transaction manage-
ment is introduced into the platform. Transac-
tion support by itself is an old yet young research
topic. By old, we mean that there have been well-
established concepts such as ACID properties and
serializability, which were developed in relational
database field and have extended to support ad-
vanced applications!213]. By young, we mean that
there are still a lot of basic challenges, especially
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in CSCW domain. It is widely acknowledged that
the so-called traditional transactions are unsuit-
While a con-
siderable number of new transaction models (e.g.,
SAGAS! CoAct!!5], Flex[le]) have been proposed
in the research literature over the years in order to
deal with the challenges, and although they have
many theoretically interesting features, they tend

able for cooperative applications.

to be too complicated to implement and use. From
our point of view, the reason for this dilemma lies in
the lack of effective approach to describing cooper-
ation and thus the run-time system knows little to
do. With Cova specification language, we believe,
the bottleneck is broken, at least to some extent.

The transaction model adopted in our platform
is CovaTM!!7l, A CovaTM transaction is viewed as
one execution of a cooperative process with its sub-
transaction corresponding to activity. Formally, it
can be defined as follows.

Definition 3 (CovaTM Transaction). A
CovaTM transaction, denoted by T, is a 5-tuple
(ST, PP, TP,AS, TM), where

e ST 1is the set of all sub-transactions of T.
For each sub-transaction, we meed to specify its
type and participants. Three types available are CP
(compensable), UC (uncompensable) and CT (com-
posite). Sub-transaction of CP or UC type cor-
responds to atomic activity, while sub-transaction
of CT type, which is also a CovaTM transaction,
corresponds to composite activity. The introduc-
tion of CT type reduces the control complezity and
enhances flexibility. Moreover, sub-transactions in
CovaTM may be reactivated after submission thus
forming a graph rather than a tree. ST can be di-
rectly obtained from process description.

e PP is the set of all precedence predicates de-
fined on ST. A precedence predicate is a Boolean
function defined on the space of execution states
and specifies the execution dependencies among
In CovaTM, two basic depen-
dencies defined are positive dependency and neg-
ative one. A positive dependency between sub-
transactions t1 and to exists if t1 cannot be exe-
cuted until ty succeeds. Whereas a sub-transaction
t1 negatively depends on ty if t1 has to wait until to
has aborted before it can start. PP is specified by
state transition rules.

e TP is the set of all temporal predicates of ST.
It reflects time constraints on transaction. TP can
be obtained from time-related rules.

e AS is the set of all acceptable states of T.
Usually there is more than one way to achieve a

sub-transactions.

business goal, so T may have multiple acceptable

states. AS is also specified by state transition rules.

o TM is the set of administrators (the M in the
formal process definition) of T. It is up to trans-
action administrators to handle emergent circum-
stances such as occurrence of undefined exceptions
and failures.

The outstanding feature of CovaTM lies in the
following. 1) It allows alternative execution paths
(there may be many ways to fulfill the same task)
as well as dynamic user intervention (accomplished
via interface service). Therefore, it can adapt to
environment changes and incomplete cooperation
description. 2) Integrated exception handling and
recovery are provided. Once an exception occurs
during execution, it is captured by Exception Han-
dler. If the exception is recognizable (i.e., the
handling rules have been specified), it is handled
accordingly. Otherwise it is reported to transac-
tion administrators for further handling. During
this process, transaction recovery may be needed
to withdraw some work that has been done. In Co-
vaTM, compensation-based transaction recovery is
exploited. For more details, please refer to [17].

3.4 Interoperation and Service Integration

As business cooperation becomes more and more
pervasive, interoperations between cooperative sys-
tems are inevitable. On the other hand, a good
platform should cover as many applications as pos-
sible. To meet the requirements, XML Mediator
and service integration are introduced.

The common issue faced by system interoper-
ation and service integration is the data inconsis-
tency resulted from heterogeneous platforms and
different software vendors. The traditional solution
is to develop a unified access interface to the het-
erogeneous data through schema reconciliation and
However, this
tight integration requires intensive human efforts
and practices have witnessed the failure of such
projects. Though the emergence of distributed ob-
ject technologies (e.g., CORBA, DCOM and EJB)
facilitates interoperation and integration, they fo-
cus on wrapping the components and routing prim-
itive requests rather than the actual mediation. We
argue that the launch of XML will change the sit-
uation essentially due to the inherent advantages
in data organization and expression. Indeed, XML
has been used successfully to normalize data con-
sumed by different sources.

explicit data transformations('8].

In our platform, XML Mediator is introduced
to reconcile heterogeneous data via XML messages.
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The structure of XML message is shown in Fig.2.
It consists of three parts, namely message enve-
lope, message header and message body. Message
envelope defines communication related parameters
such as message source and target addresses as well
as message ID. Message header specifies message
attributes such as names of sender and receiver,
message type. Message body contains application
specific request. For each XML message, we should
also specify the schema used, which defines appli-
cation specific data types adopted within message

body.

(XMLMessage schema=“schemal.xsd”)

(Envelope)
(MessagelD)12345(/MessagelD)
(Target)192.168.1.1(/Target)
(Source)192.168.1.10(/Source)

(/Envelope)

(Header)
(Receiver)John(/Receiver)
(Sender)Jack(/Sender)
(Type)CreateProcessInstance(/Type)

(/Header)

(Body)

(/Body)
(/XMLMessage)

Fig.2. XML message format.

With XML message defined, the system can
then handle the requests from various applications
automatically. Although wrapping existing sys-
tems is needed, it is still much cheaper than that of
object-oriented methods. In addition, this loosely
coupled way enhances the system flexibility.

Cova platform exploits service integration to en-
hance system functionality and applicability. Be-
sides data integration issue, which has been solved
by XML message as above, service integration
should solve the following additional issues.

e Service description: service description is used
to specify a service offered by a system. It concerns
general properties of service as well as service inter-
face. This is the foundation of transparent service
invocation.

e Service registration: the precondition for a
service to be found is to make it known publicly
at some place. Service registration is exploited to
achieve this goal.

It can be achieved via the following procedure.

1) Wrap the legacy system or build a new one with
some public interfaces exported as a dynamic link li-
brary (DLL), say pnative.dll, in other programming
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languages.

2) Write some codes in CODL to describe the inter-
face specification. A rule that must be obeyed for inter-
face specification is that the interface name as well as
the number of parameters must be the same as defined
in DLL in step 1). Moreover, their parameter types
must be compatible.

3) Enroll the service. As a result, a registration item
is added to the system configuration file, which has the
form of “CEMail=pnative.dll, plib.p, CEMailAgent”,
where CEMail is the name of service implemented or
encapsulated in pnative.dll and CEMailAgent is the in-
terface specification defined in Cova source file plib.p.
Based on the service description, service bus can load
the corresponding module when needed. All services
available can be obtained from directory service.

At the end, we should point out that our plat-
form also provides a way (via system configura-
tion interface) to dynamically load /unload services,
which makes the platform tailorable and thus plat-
form adaptability is enhanced.

4 Application Development: A Case Study

In this section, we will illustrate how to develop
a general workflow management system (WfMS)
with Cova platform. Note that it is also feasible to
develop other applications based on the platform.
More examples can be found in [9]. This is possi-
ble owing to the features of the Cova specification
language and run-time system.

According to Workflow Management Coalition
(WEMC), WIMS is a system that completely de-
fines, manages and executes workflows through the
execution of software whose order of execution is
driven by a computer representation of the work-
flow logic. As Cova platform is based on a formal
model similar to that of WfMS and Cova run-time
system has provided the cooperation control func-
tions, the construction is straightforward. For ex-
ample, activity control serves as workflow engine
and interface services act as workflow APIs. Work-
flow specifications can be described by the Cova
specification language. The architecture of the re-
sulting system is illustrated in Fig.3, where func-
tions directly available are marked with bold line.
All the work involves application specific functions
rather than cooperation control. Table 1 lists all
the steps needed to construct a WfMS by Cova,
where steps needed in traditional way are also given
for comparison.
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WIEMS client tools

Application specific
user interfaces

Cova platform client
functions (replication/

concurrency control, etc.)

M Interface services 4 C/S protocol
(APT)

WIEMS server

Cova platform server
functions (interface
services, Cova runtime
services and
supporting services)

A A
Integration

Application specific
services

——— Functions supplied by Cova platform

Fig.3. Workflow management system architecture by Cova platform.

Table 1. Steps Needed to Develop a WIMS

Step By Cova In Traditional Way
1 Requirement Requirement analysis
analysis

2 Model descrip-
tion in Cova
language

3 —

Model design

Design and implementation of
workflow engine, APIs, process
management, etc.

4 Client tools de-  Client tools development from

velopment with  scratch
APIs
5 Deployment Deployment

We can see both approaches should analyze ap-
plication requirements first. Otherwise the result-
ing system cannot achieve its goal. In traditional
way, once the requirements are figured out, a for-
mal model should be designed and based on it, the
management system is developed. In more details,
developers should implement workflow engine, pro-
vide workflow APIs and supply process manage-
ment functions. It is a complicated task and full
of risk factors (e.g., errors or deficiencies are easily
introduced). With Cova platform, since the for-
mal model has been defined and the necessary ser-
vices for process enactment and management have
been supplied by the run-time system, all endeavors
needed are 1) converting the application require-
ments to process description in Cova specification
language, and 2) compiling the codes got and sav-
ing the results to Cova server, and 3) implement-
ing required services and integrating them into the
server following the procedure presented in Sub-
section 3.4. Therefore, the development efficiency
is greatly enhanced. Client tools development in
traditional way should implement the communica-
tion protocol between server and clients. This is
not needed for Cova because the protocol has been
shipped with interface services. So the efficiency is
also enhanced. Moreover, system developed in this

way has the following features as supplied by Cova.

1) It provides good support for process reuse via
process inheritance and composite activity. As we
all know, it is time-consuming to define a complex
process even if working collaboratively. With this
functionality, process designers’ burden is eased.

2) It can support synchronous activities as ex-
plained previously. This function is either short in
most workflow products or implemented in other
non-uniform ways. As a result, concurrency con-
trol is difficult if it is not impossible.

3) It can interoperate with other cooperative or
legacy systems fluently due to the inherent support
for XML message and service integration.

4) Tt can support mission-critical tasks since
transaction management is supplied by the plat-
form. Most workflow products fall short of this
functionality.

5 Conclusions and Future Work

We have shown a platform capable of uniformly
modeling cooperative scenarios in different modes
and enhancing the efficiency of groupware develop-
ment. The way adopted by Cova can be summa-
rized as follows.

Firstly, based on an abstraction of groupware
systems, a formal model is defined, with which
various aspects of groupware systems can be in-
vestigated. This forms a solid foundation of the
platform. Based on the formal model, Cova spec-
ification language is devised for uniformly describ-
ing cooperation scenarios. Extra flexibility is also
gained by its clear separation and seamless inte-
gration of the computation and coordination parts
of a cooperation process, and introducing run-time
information into process description.

Process definitions alone are not enough for
supporting cooperation, so Cova run-time sys-
tem is implemented, which provides some general-
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purposed necessary services (e.g., activity control,
replication and concurrency control) for process en-
actment. On account of diverse application do-
mains and requirements, transaction management
and service integration are also introduced to en-
hance platform applicability. These services are
made available through interface services to facili-
tate application development.

By now the platform is largely completed and
can run some simple applications. Indeed, based
on the interface services provided, we have estab-
lished a command line tool for users to fulfill their
tasks. In addition, two examples (one is the work-
flow management system given in Section 4 and the
other is a co-authoring system) are under develop-
ment. Our future work includes but is not limited
to the following.

e Performance measurement. Since the codes
are interpreted, obviously it will lower system per-
formance. In addition, the concurrency control al-
gorithm 0odOPT will reduce system performance
further for much calculation is required to trans-
form an operation. Therefore, a careful perfor-
mance evaluation is necessary especially when de-
veloping large-scale applications. However, we ar-
gue that compared with the flexibility gained, the
performance decrease is worthy.

e Process analysis and optimization. The pur-
pose is to ensure process correctness and make the
process more effective.

e Support to decentralized servers. Currently
there is only one centralized Cova server in our plat-
form. This makes the control mechanisms simple
and easy to implement. However, it may become
a bottleneck of the platform. One way out is to
deploy various cooperative services on top of grid
infrastructure. We believe with the grid facilities,
such a solution would be cost-effective.
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