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Abstract

Serverless computing is renowned for its computation elas-
ticity, yet its full potential is often constrained by the re-
quirement for functions to operate within local and dedi-
cated background environments, resulting in limited mem-
ory elasticity. To address this limitation, this paper intro-
duces TRENV, a co-designed integration of the serverless
platform with the operating system and CXL/RDMA-based
remote memory pools in two key areas. Firstly, TRENV intro-
duces repurposable sandboxes, which can be shared across
different functions and hence, substantially decrease the
overhead associated with creating isolation sandboxes. Sec-
ondly, it augments the OS with “memory templates” that
enable rapid restoration of function states stored on remote
memory. These innovations allow TRENV to facilitate rapid
transitions between instances of different functions and en-
able memory sharing across multiple nodes. Our evaluations
using a variety of representative and real-world workloads
demonstrate that TRENV can initiate a container within 10
milliseconds, achieving up to a 7x speedup in P99 end-to-
end latency and reducing memory usage by 48% on average
compared to state-of-the-art on-demand restoring systems.

CCS Concepts: -« Computer systems organization —
Cloud computing; - Software and its engineering —
Memory management.

Keywords: Serverless, Cold Start, CXL, Remote Memory

ACM Reference Format:

Jialiang Huang*¥ Mingxing Zhang** Teng Ma”* Zheng Liu" Six-
ing Lin** Kang Chen® Jinlei Jiang®, Xia Liao* Yingdi Shan* Ning
Zhang” Mengting Lu” Tao Ma® Haifeng Gong® Yongwei Wu**.
2024. TRENvV: Transparently Share Serverless Execution Envi-
ronments Across Different Functions and Nodes. In ACM
SIGOPS 30th Symposium on Operating Systems Principles

+: Corresponding author.

This work is licensed under a Creative Commons Attribution International 4.0 License.

SOSP ’24, November 4—6, 2024, Austin, TX, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1251-7/24/11
https://doi.org/10.1145/3694715.3695967

421

(SOSP ’24), November 4—6, 2024, Austin, TX, USA. ACM, New
York, NY, USA, 17 pages. https://doi.org/10.1145/3694715.36
95967

1 Introduction

1.1 Motivation

Serverless computing, renowned for its fine-grained resource
allocation and billing, enables applications to scale efficiently
while optimizing resource utilization. Given its transforma-
tive potential, serverless computing is now available across
all major cloud service providers [21, 24, 44] and is applied
across a broad range of sectors [5, 25, 33, 47, 60].

However, despite the utopian vision of serverless com-
puting, its real-world implementations face many practical
limitations. Although serverless models suggest that func-
tions could be transparently scheduled across data centers
to maximize resource utilization, this idealized elasticity is
often compromised by the functions’ need for efficient ac-
cess to local and dedicated background environments. This
contradiction between computational elasticity and
environment localization poses challenges to the full re-
alization of serverless’s potential.

Precisely, the execution of a serverless function typically
unfolds in three phases. (1) The sandbox creation phase es-
tablishes an isolated sandbox (e.g., a container); (2) The boot-
strapping phase initializes the function, which may involve
steps like launching Python/Java virtual machines; and fi-
nally, (3) The execution phase executes instance-specific
logic according to the inputs of this invocation. The first two
phases are essential for setting up an execution environment
for each function invocation. However, they do not directly
contribute to processing user inputs, thus their overheads
(in both CPU time and memory consumption) should be
minimized.

Unfortunately, studies show that the time required to cre-
ate such dedicated environments can significantly exceed the
actual execution time of a function, leading to the notorious
“cold start” problem in serverless computing [39, 66]. This
issue has prompted the development of various caching tech-
niques aimed at keeping functions warm and ready for im-
mediate reuse [6, 20, 28, 59]. However, these mechanisms ne-
cessitate the reservation of local resources, particularly mem-
ory, introducing a trade-off between initialization speed and
resource costs, thereby diminishing the system’s overall elas-
ticity. For instance, commercial solutions like AWS Lambda’s
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Figure 1. TRENV’s view of a container. It consists
of two parts: a repurposable sandbox, which is com-
prised of isolation resources such as the root filesys-
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tem (rootfs); and a group of processes, the critical Figure 2. Overview of TRENV. Steps A1-A2 refer to offline preprocess-

component of which is the memory state.

ing, while steps B1-B4 refer to online repurposing (detailed in §3).

Table 1. The core components in current containers.

‘ Unit Description Overhead  TRENV’s Solution
Isolated network environment, such as independent ports, Direct reuse as it does not leak any data
Network | . . . 80ms~10s . .
including a network namespace and a virtual ethernet device. produced during processing (§5.1.1).
Root filesystem for containers, including a mount namespace
Sandbox| Rootfs A & PAC€ 10 ~800 ms . .
and necessary filesystems such as sysfs under /sys. Reuse with reconfigurations, at a lower
‘ Cgroup Resource isolation, such as CPU and memory usage control. 30 ~400 ms cost than creating (§4.2).
‘ Other  Other isolated resources, such as time and pid namespaces. <1ms Create with low overhead.
Post-initialized state of functions, including loaded language Introduce new kernel features, bypass
Memory . . . . >300 ms
Process runtime, imported libraries and user code. costly memory copy (§4.1).
‘ Other  Multi-thread context, open file descriptors, socket, etc. 3 ~15ms.  Handled by CRIU with strong generality.

Provisioned Concurrency [28], which provide caching, devi-
ate from the ideal pay-as-you-go model of cloud computing
by charging for these reserved resources.

The requirement for execution environments also gives
rise to other issues, such as “memory stranding” [51] and
“state duplication” [63]. Memory stranding occurs when a
server’s computational resources are fully engaged, but its
memory remains underutilized. State duplication arises when
concurrent serverless functions require but cannot efficiently
share identical states due to existing isolation mechanisms.
Recent studies have indicated that these challenges lead
to significant inefficiencies, with up to 50% of memory re-
sources being underutilized in the cloud [41, 46] and an 80%
occurrence of state duplication [63]. These issues collectively
pose significant obstacles to achieving genuine elasticity in
serverless computing.

1.2 Our Contribution

In this paper, we present TRENv, a serverless computing
platform crafted to minimize CPU time and memory costs
associated with serverless execution environments. The main
idea is to share components of these environments across
different functions and nodes as much as possible. As we can
see from Figure 1, TRENV partitions the environment of a

422

function instance into a sandbox and a group of processes,
with the memory state being their most critical component.
Rather than discarding this execution environment upon
the completion of a function instance, TRENV cleanses and
reallocates it to a repurposable sandbox pool. Subsequent
functions can reuse these sandboxes by attaching function-
specific memory states, which are offloaded to a shared CXL
or RDMA-based memory pool. This process, termed “repur-
posing” in TRENV, is depicted in Figure 2. Through innova-
tive enhancements at the operating system (OS) and core
libraries like Checkpoint/Restore In Userspace (CRIU) [8],
this procedure typically takes less than 10 ms, and each invo-
cation only requires additional memory for updated pages,
with all read-only pages being shared transparently.

TRENV’s approach of container repurposing, while bear-
ing similarities to existing caching solutions, distinguishes
itself in two significant ways. Firstly, it enables transparent
transitions of containers between different types of func-
tions, eliminating the need for function-specific resource
reservations and thereby maximizing resource elasticity. To
achieve this, we have identified crucial kernel objects that
contribute to the overhead of creating isolated sandboxes.
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Figure 3. Multi-layer architecture of mm-template.

Some of these components are directly reusable across differ-
ent functions, while others necessitate a tailored reconfigura-
tion that upholds cost-effectiveness without compromising
isolation properties relative to previous container-based sys-
tems. These components are listed in Table 1 and will be
discussed in detail in §3.1 and §4.2.

Secondly, TRENV offloads function-specific memory states
to a shared memory pool. This strategy shares the states
across multiple server nodes, effectively amortizing the over-
all expense. TRENV also supports an effective deduplication
process that eliminates redundant states across different func-
tions, potentially reducing memory usage by up to 48% in
our evaluated functions (Table 2 in §6.1).

However, operating system modifications are required
to rapidly instantiate serverless functions from snapshots
stored in remote memory pools. This process resembles per-
forming a “fork” but includes capabilities beyond those of-
fered by current operating systems. To support this, we have
extended the kernel with an mm-template API, enabling the
creation of custom memory templates for each serverless
function. These templates consist of reserved page tables
that map to remote, potentially overlapping, non-contiguous
memory segments within the pool, representing dedupli-
cated snapshots of serverless functions.

The flexibility of our design is one of its key strengths. As
demonstrated in Figure 3, TRENV integrates mm-templates
with both CXL and RDMA memory pools, each offering dis-
tinct advantages. Notably, to leverage the byte-addressable
capabilities of CXL, mm-templates enable direct reads for
read-only pages, which introduces zero additional software-
level overhead during execution. Given our analysis showing
that 24% to 90% of memory accesses are to read-only pages in
serverless functions, this technique substantially accelerates
processing times by avoiding unnecessary data copying or
page faults, thereby significantly reducing latency. Despite
this, existing OS primarily utilizes CXL for memory expan-
sion as per the capabilities of CXL 1.1, thus lacking support
for memory sharing and deduplication required in multi-
node environments introduced since CXL 2.0. To overcome
this limitation, we have enhanced the OS to allow precise
control over the mapping between virtual and physical ad-
dresses in CXL memory and supported both file-backed and
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anonymous memory mappings to maintain a process’s com-

plete state, including heap and stack areas.

Different from CXL, integrating RDMA-based remote mem-
ory follows a lazy paging strategy, where any access to re-
mote memory triggers a major page fault that fetches a 4KB
block online. Since all states in the memory pool are read-
only, with write operations managed through copy-on-write
mechanisms, a multi-layered architecture integrates seam-
lessly with our approach. This allows for the strategic place-
ment of hot pages in the upper layers, such as CXL or even
local memory, and cold pages in the lower layers, such as
RDMA or even network-attached storage. The specific num-
ber of layers, as well as the cache eviction or page promotion
strategies, are orthogonal to our core implementation.

Moreover, the ease of use is the most important attraction
of serverless computing. To avoid the need for users to mod-
ify their code or recompile their applications, TRENV decides
to transparently incorporate repurposable sandboxes and
mm-templates into the serverless platform. It implements
a new “repurpose” command in CRIU, based on the exist-
ing “restore” command. This facilitates the seamless integra-
tion with many existing serverless platforms due to CRIU’s
widespread adoption in mainstream container runtimes like
Docker[57] and Podman[13].

We have developed TRENV atop faasd [40], a widely-used
serverless platform. TRENV can initiate many function in-
stances in about 10 ms, and even complex applications con-
taining more than 140 threads in just 18 ms. Importantly,
these latencies are achieved while maintaining the same or
stronger isolation than previous container-based solutions.
Our evaluations of TRENvV with both Python and Node.js
functions, conducted under both representative and indus-
trial workloads, have shown significant improvements:

(1) TRENV achieves up to a 7x and 18X speedup in P99 end-
to-end (E2E) latency under concurrent loads compared to
REAP [72] and FaaSnap [26], two state-of-the-art (SOTA)
lazy restoration methods, respectively.

(2) TRENV can reduce peak memory usage by 48% on average
compared to SOTA.

(3) A detailed comparison between real-world CXL and RD-
MA memory pools reveals that CXL provides more stable
performance, particularly at P99, and offers up to a 3.51x
speedup on execution time over RDMA.

In summary, TRENV significantly enhances serverless com-
puting by reducing P99 E2F latency and minimizing memory
overhead for each function through two key strategies: (1) It
transparently shares repurposable sandboxes across different
types of functions, thus avoiding the overhead associated
with reserving resources for each individual function type.
(2) It transparently shares the initialized memory states on
remote memory pools via mm-template, substantially re-
ducing restoration time and effectively amortizing memory
consumption. Both functionalities are supported by low-level
kernel and CRIU modifications, enabling their transparent



integration into the initialization of multi-threaded/process
and even multi-language serverless applications. TRENV is
available at https://github.com/switch-container.

2 Background and Motivation

2.1 Dissaggregated Memory

CXL Compute Express Link (CXL) [3] is emerging as a
promising technology in the realm of high-speed server
interconnects, notable for its low latency [79], high band-
width [71], and ability to enable shared memory access be-
tween servers. Its adoption by industry giants [52, 56, 79]
also underscores its increasing significance and application
in modern computing infrastructure.

Our research primarily concentrates on CXL’s capability
of sharing memory across different machines, which has
been supported by multi-headed devices (MHD) even with
CXL 2.0. Real-world support for this capability has been
demonstrated in previous research [79]. Collaborations be-
tween many companies [9, 11, 14, 16] have also led to a
commercial solution that enabled up to 7.5 TB CXL-attached
memory pool shared by up to 12 servers [15]. We only need
read-only sharing capabilities, so a Type-3 device with multi-
ple CXL 2.0 interfaces (MHD) is sufficient without the strong
consistency guarantees introduced in CXL 3.0 [2].

CXL’s fine-grained and efficient access capability means
only the needed cache lines are retrieved, not entire pages.
Thus, it provides a potentially faster alternative to RDMA.
RDMA Prior to CXL, RDMA was the standard protocol
for building disaggregated memory pools, which can be
grouped into two main categories: Firstly, solutions such
as Infiniswap [45] and Fastswap [23] enable efficient swap-
ping over RDMA. Secondly, frameworks and runtimes like
AsymNVM [55] and FaRM [37] offer coarse-grained abstrac-
tions that resemble key-value stores or file interfaces. TRENV
tries to implement transparent and extensible in-kernel func-
tionality to support various remote memory, including but
not limited to RDMA.

2.2 Serverless Computing

The very idea of serverless is fragmenting applications into
smaller, independent tasks that can be dispatched to which-
ever node has available CPU resources, thereby enhancing
resource utilization. However, the pursuit of this optimal
elasticity often encounters two predominant barriers: (1) a
target node may sometimes lack sufficient memory, prevent-
ing task dispatch, due to the tight coupling between compu-
tational and memory resources, and (2) additional overheads
introduced by this fragmentation, such as cold starts. The
adoption of disaggregated memory has emerged as a viable
solution to the first issue, with studies like Fastswap [23] and
Pond [52] exploring its benefits. Our research pivots towards
harnessing CXL/RDMA-based shared memory pool to tackle
the second barrier.
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Figure 4. Breakdown of the latency for a Python-based func-
tion, highlighting the overhead associated with the sandbox.

Referring to the “Cold Start” bar in Figure 4, we identify
two significant costs: (1) The preparation of an isolated sand-
box, including tasks like creating the rootfs, and (2) The cost
involved in bootstrapping the function’s processes, such as
launching interpreters and importing libraries. These ancil-
lary overheads overshadow the proportion of the function’s
actual productive execution time, given that many studies
report that most serverless functions execute in less than
one second [48, 64].

2.2.1 Existing Research Historically, caching mechanisms
have been extensively studied and deployed to mitigate cold
start overheads [42, 62, 64]. However, as discussed earlier,
they introduce a trade-off between expediting initialization
and reserving resources, which in turn impedes system elas-
ticity.

Prior research efforts have thus been directed towards
reducing the cost of caching by eschewing the reservation
of active containers. Instead, they created snapshots or tem-
plates of a function’s complete state immediately after ini-
tialization and stored them as files [10, 66]. When a new
instance needed to be started, it was restored from the snap-
shot, bypassing the bootstrapping phase.

Nevertheless, these strategies fail to fully conquer the
aforementioned challenges. As highlighted by the CRIU bar
in Figure 4:

(1) the need to establish a new isolated sandbox still exists,
thereby sustaining the associated overheads. Our findings
also indicate that isolation costs escalate with concurrent
cold starts. For example, concurrently initiating 15 instances
results in a network setup time of 400 ms, aligning with prior
studies [58, 59].

(2) the memory restoration overhead (“Mem” in Figure 4) is
still non-negligible due to costly data copying. In Figure 4,
we store the snapshot files in a local DRAM-based tmpfs to
avoid the overhead of disk or network I/O. However, as we
can see from the figure, memory copying alone takes over 60
ms during container bootstrapping, even for its small 60MB
memory image. This overhead scales with the size of the
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Figure 5. Two phases of CRIU in current container runtime.

memory image; for instance, a 360MB memory image would
take over 220 ms to restore.

Further optimizations have been suggested to alleviate
these challenges. But, according to our investigation, a holis-
tic solution remains elusive. Lightweight container technolo-
gies [59], for instance, mitigate the overhead of sandbox
setup but do so at the cost of compromised isolation, mak-
ing them unsuitable in multi-tenant contexts (more in §4.2
and §5.1). In practice, serverless platforms, such as Open-
Whisk [4] and faasd, still resort to standard containers for
a better level of isolation, or even opt for secure contain-
ers (e.g., VM) [10, 19, 53], which could entail higher initial-
ization costs [75].

Additionally, several “lazy restore” techniques have been
proposed to hide the latency of data copying, such as record-
ing and prefetch-based replay [26, 72] or restoring state
through efficient RDMA reads in a manner akin to a remote
on-demand “fork” [76]. Nonetheless, these methodologies
(1) merely defer the restoration overhead to the execution
phase rather than reduce it, (2) do not leverage the poten-
tial of various remote memory pools, (3) focus on memory
restoration but overlook the overhead associated with iso-
lated sandboxes, such as namespaces and cgroups.

3 Overview: From Restore to Repurpose

As discussed earlier with Figure 2, the key idea of TRENV is an
innovative repurposing strategy for reusing sandboxes and
memory states of functions. In a traditional caching strategy,
the cached container is limited to being reused by the same
function. TRENv diverges from this by enabling an efficient
transition from an idle function instance to any one of the
pending functions, regardless of its type. Thus, it achieves
a universal sandbox pool. By moving away from the rigid,
function-type-specific model to a more flexible, function-
type-agnostic one, our design substantially enhances the
elasticity of serverless computing. Crucially, TRENV accom-
plishes this with the same or stronger level of security and
isolation compared with previous container-based systems.

Implementing such a transparent and efficient state tran-
sition necessitates OS kernel changes and updates to vital
serverless infrastructures, such as CRIU. To further elucidate
our concept and its accompanying challenges, Figure 5 and
Figure 2 present a detailed comparison of the function ini-
tialization workflows with the adoption of CRIU before and
after our proposed enhancement.
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Figure 6. Three highlights in mm-template compared to the
mm_struct in Linux. (1) Not bound to a particular process
but can be attached dynamically into any active process.
(2) Treat all remote memory read-only and enable copy-on-
write. (3) Fine-grained control over page tables to map virtual
address (VA) to physical address (PA) on remote memory.

The current workflow involves two phases: a preprocess-
ing phase and an online restoration phase. As depicted in
step A’ of Figure 5, the preprocessing phase involves creating
snapshots for each function and storing them as files. These
snapshots, representing the post-initialization state of a func-
tion, are used for subsequent restorations. When a function
is invoked, the system performs two steps to start a new
container: (B1’) it recreates a new sandbox (e.g., rootfs and
cgroup) based on metadata in the snapshot image; and then
(B2’) it restores the processes states. A significant challenge
in step B2’ is restoring the memory state, which requires
numerous mmap () system calls to recover virtual memory
layouts and costly data copying to reload memory contents.

While maintaining both phases, TRENV introduces im-
provements to streamline the restoration phase into the
more efficient repurposing phase. In the preprocessing phase,
TRENV generates snapshots for each function (step Al in
Figure 2) akin to the original CRIU. Yet, rather than saving
memory states as files, TRENV first deduplicates them into
consolidated images stored on remote memory pools, then
constructs one memory template (mm-template) per Linux
process in the function, based on these snapshots (step A2).

As shown in Figure 6, each mm-template is an in-kernel
object that has a structure similar to how traditional mem-
ory state is maintained by the kernel for each process (i.e.,
mm_struct). It only contains the metadata of the memory
state, such as a page table and virtual memory layouts (i.e.,
vm_area_struct). Hence, its size is small (e.g., < 1 MB). By
only copying this metadata instead of large memory images
during function restoration, the overhead is largely reduced.
Additionally, copying from the same mm-template enables
seamless memory sharing among the instances of the same
function and even across different hosts.

TRENV leverages these mm-templates to expedite function
transitions. As shown in Figure 2, the online restoration
phase in TRENV consists of four steps.



(B1) Upon completion of an instance of function X, TRENV
cleans its sandbox and puts it into a pool instead of
discarding it. This step includes terminating existing
processes within the container, ensuring any residual
state from the predecessor will not be kept for security
reasons.

(B2) When a function Y’s invocation is pending, TRENV se-
lects a sandbox from the pool and repurposes it into
the pending type Y. This includes applying a unique
overlay filesystem of function Y (more in §4.2.1) and
restoring the corresponding cgroup limits. Note that
TRENV still offers all isolation components (e.g., cgroup
and namespaces) as with a standard Docker container
to every function instance.

(B3) TRENV issues a “repurpose” request to CRIU. CRIU helps
the restored processes of function Y to join the repur-
posed sandbox and recover other process states except
for the memory state, such as calling clone () to restore
multi-thread context. This repurpose-and-join pattern
allows efficient reuse of sandbox units like namespaces
and cgroups.

(B4) TRENV attaches the mm-template to the restored pro-
cess of function Y, efficiently restoring its memory state.
Note that TRENV executes the aforementioned steps
transparently, requiring no code modifications or re-
compilation from users.

However, the implementation of the above steps each has its

challenges.

3.1 Challenge on Reusing Isolated Sandbox

As shown by the breakdown analysis in Figure 4, the cost
of creating a new sandbox predominantly consists of three
parts, namely for the rootfs, network environment, and cgroup.
While network namespaces and virtual network devices can
be safely reused without leaking private data from execution,
reusing other resources presents unique challenges.

Each function comes with unique dependencies in its
rootfs, such as specific libraries or files. This diversity, along
with the requirement of isolation, complicates the possibility
of a universal sandbox that can be seamlessly repurposed
across functions. Consequently, there is a need for a mecha-
nism that allows rapid filesystem transitions to accommodate
these varying dependencies while minimizing storage over-
head. Additionally, it is essential to ensure write access to all
paths in the rootfs, which is crucial for a practical serverless
platform, as emphasized by Alibaba [53] and Amazon [30].

Cgroups play a critical role for container-based resource
isolation. Its typical workflow involves three steps: (1) create
a cgroup for each container (2) spawn container processes,
and (3) move the processes into the newly created cgroup.
The third step is referred to as cgroup migration in Linux.
Prior studies focused on alleviating the bottlenecks in the
first step, such as maintaining a cgroup pool to amortize the
creation overhead [53, 59]. Our investigations reveal that the
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cgroup migration typically incurs latency ranging from 10 to
50 ms, while the cgroup creation latency ranges from 16 ms
to 32 ms. Therefore, there is a significant need to address and
minimize the overhead stemming from cgroup migration.

3.2 Challenge on Implementing mm-template

The implementation of memory templates necessitates sub-
stantial modifications to existing OS memory management
interfaces. In this section, we highlight three challenges asso-
ciated with the implementation. First, mm-template must be
extensible and capable of transparently supporting access
interfaces of different types of remote memory. For example,
CPUs can directly access CXL memory via load/store instruc-
tions, RDMA employs a message queue model, and NAS uses
a block-based I/O interface. The mm-template should accom-
modate these different interfaces, establishing an extensible
framework that can utilize multi-layer memory pools.

Second, the system should minimize additional overhead.
Traditional memory systems often adopt a lazy or on-demand
approach, triggering memory loading during execution via
page faults [23] or a userspace daemon [72] via userfaultfd.
These approaches are acceptable in previous implementa-
tions because the predominant component of their latency
remains in I/O (e.g., 60 ps for SSD and 6 ps for RDMA). How-
ever, the low-latency, byte-addressable features of CXL mem-
ory make it crucial to avoid additional overheads, such as
page faults, which could drastically degrade performance
and obscure its advantages.

Finally, the OS needs to be extended to support shared
CXL memory. Current OS memory interfaces are designed
primarily for single-host memory expansion (as for CXL 1.0)
and hence fall short in supporting cross-host sharing and
diverse memory mappings that TRENV requires.

Presently, two main approaches are used for incorporating
CXL memory in Linux: (1) Expose the CXL memory as a
CPU-less NUMA node [52, 71]. (2) Designate CXL memory
as a special device file (e.g., /dev/dax@.1) and pass it to
mmap (), with the help of direct access (DAX)[1] drivers.

The CPU-less NUMA approach is typically suitable only
for memory expansion. Due to the Linux memory allocator’s
design for physical address transparency, it prevents the
specification of physical addresses during allocation. Hence,
it is challenging to coordinate multiple hosts to share CXL
memory pages. Although the DAX method permits setting
physical offsets on CXL memory devices via mmap, it has its
own set of limitations:

(1) The DAX driver does not support private mappings,
which means it does not support copy-on-write for
CXL memory pages.

(2) DAX is incompatible with file-backed and some anony-
mous memory mappings, which are essential for criti-
cal process regions like heap and stack.

For example, enforcing mm-template to restore heap areas
through the DAX method could inadvertently cause heap



/7 create a new mm-template, return an identifier of mm-tempIlate in ~id"
int mmt_create(int *id);
// add a memory region to mm-template, most arguments are the same as “mmap()]
int mmt_add_map(int id, void *start, size_t len, int prot, int flags,
int fd, off_t offset);
// setup page table for a particular memory region at “phys_offset’ on
// remote memory. ~pool’ denotes the type of memory pool (e.g., CXL or RDMA)
int mmt_setup_pt(int id, void *start, size_t len, off_t phys_offset,
enum mem_pool_t pool);
// attach the mm-template into process identified by “pid"
int mmt_attach(int id, int pid);

Figure 7. Core API of mm-template.

growth (e.g., brk) to jump into adjacent CXL memory ranges,
posing risks of memory disclosure or data corruption.

4 TRENvV Design

In this section, we describe how TRENV solves the challenges
described in §3 with kernel extensions.

4.1 Memory Template Design

To enhance transparency, we have implemented the mm-
template within the OS kernel and integrated it into CRIU.
This integration allows serverless applications to leverage
the advantages of memory pools without the need for code
modifications or recompilation. For extensibility, the mm-
template supports various memory pool backends via the
page table and the page fault mechanism. During the prepro-
cessing phase, mm-template saves essential information in
its page table entries (PTEs), including the type of memory
pool, remote addresses, and a special bit. For slower back-
ends like RDMA, TRENV adopts a lazy approach, marking
the corresponding PTEs as invalid. Thus, page faults are
triggered during execution, allowing the kernel to identify
these pages via the special bit in the PTE and route them to
appropriate memory pool backends. These backends then
use the remote address in the PTE to allocate local pages
and load content from remote pools through their specific
interfaces and implementations.

In contrast, for low-latency, byte-addressable memory
pools like CXL, mm-template preconfigures valid PTEs, di-
rectly pointing to shared snapshot images stored in CXL
memory. This achieves zero software-level cost (instead of
on-demand) for read-only access during execution. The CPU
can directly access the CXL memory using load instruc-
tions, thereby avoiding the additional overhead associated
with context switches and minor page faults. After analyz-
ing the functions in Table 2, we found that 24% to 90% of
the pages are read-only, consistent with prior research re-
sults [22, 69, 72]. Thus, employing a copy-on-write strategy
for write accesses in TRENV is feasible to maintain the in-
tegrity of a single copy of memory images on shared memory
pools.

Furthermore, to facilitate sharing of CXL memory, TRENV
implements a new driver in the kernel to overcome the limi-
tations of the existing DAX driver. According to our inves-
tigation, the drawbacks of the DAX method stem from its
tight coupling of the CXL device (e.g., /dev/dax@. 1) and the
virtual memory mappings. Users must create virtual memory
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mappings through mmap and bind those mappings with the
CXL device. This (1) conflicts with some anonymous map-
pings like heap areas, and (2) prevents binding other file with
the mapping. By closely integrating the pre-created page ta-
bles mentioned earlier, our driver enables virtual memory
mappings on CXL without associating DAX devices.

As an illustration of the core mm-template API shown in

Figure 7, in the preprocessing phase, TRENv will explicitly
set PTEs (via mmt_setup_pt) in mm-template, after creating
the virtual memory area (via mmt_add_map). The new driver
helps mmt_setup_pt to (1) translate the offsets into physical
addresses on CXL memory, (2) set the valid PTE correspond-
ing to those virtual addresses, and (3) pin the CXL memory
pages in memory. After that, there will be no reliance on the
DAX device and its driver to allocate pages or set PTE dur-
ing execution. Moreover, unlike the DAX method, the new
driver can seamlessly support copy-on-write by clearing the
writable bit in the PTE. Users of mm-template could create
virtual memory mappings backed by CXL memory without
binding any special file or device. Thus, mm-template can
support both other file-backed mappings and anonymous
mappings. For instance, heap areas will reside on CXL mem-
ory after attaching mm-template via mmap_attach. As there
is no binding DAX device anymore, subsequent heap growth
during execution will default to local memory allocations,
avoiding disrupting other CXL memory regions.
4.1.1 Usage of mm-template Due to the transparency
of mm-template, using CXL and RDMA only differs in the
‘pool’ argument passed to mmt_setup_pt for PTE precon-
figuration. Most of the complexity is hidden in the kernel.
Figure 8 shows the workflow to use mm-template, involv-
ing two single-process functions. Initially, during the offline
preprocessing phase, the system generates a snapshot for
each function using CRIU. TRENV then deduplicates these
snapshots, resulting in a consolidated image stored in mem-
ory pools (step (1) in Fig 8). As shown in Fig 8, the snapshots
for functions X and Y include a duplicated region (R2 and
R2’, respectively) mapped to the same Block 2 on remote
memory. Additionally, TRENV logs the physical start offset
of each memory block on the memory pool, such as 0x88000
for Block 2, which comprises, for example, 4 pages. This
physical offset acts as a machine-independent pointer.

Subsequently, each host constructs one mm-template for
each process in the function (step (2)). For example, TRENV
calls mmt_create(&X) to initiate a memory template for
function X. This template is then populated with specific vir-
tual memory mappings using the mmt_add_map API (step (3)).
For example, to allocate the private read-only anonymous
mapping R2 in X’s template, TRENV executes mmt_add_map (X,
Ox7FFF4000, 4xPAGE_SIZE, PROT_READ, MAP_PRIVATE,
-1, 0). The address 0x7FFF4000, derived from the snapshot
image, represents the original virtual memory address of
R2 in the checkpointed process of X. The virtual memory
mappings are then linked to the remote memory pool via
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Figure 8. A simplified example of using mm-template.

mmt_setup_pt API (step (4)). For example, mmt_setup_pt (X,
Ox7FFF4000, 4*PAGE_SIZE, 0x88000, CXL) associates R2
in X’s template with Block 2 on CXL memory. Our new ker-
nel driver helps to convert the offset 0x88000 to the corre-
sponding physical address on CXL memory and install valid
PTEs. For the RDMA pool, such as R3 in mm-template Y, it
installs invalid PTEs with the address in the RDMA memory
pools, then loads memory pages in subsequent page faults.
During the repurposing phase (i.e., critical path), TRENV
attaches the mm-template to the process to be restored, via
mmt_attach API (step (5)). Each mm-template can be at-
tached multiple times, and it only copies the metadata, e.g.,
page tables, instead of the memory pages. For instance, to re-
store the memory state of a process of function Y whose pro-
cess ID (PID) is 666, TRENV executes mmt_attach(Y, 666).

4.2 Repurpose Isolated Sandbox

Two challenges related to isolated sandbox were mentioned
in §3.1. The first is that varying functions require differ-
ent dependencies, making the reuse of rootfs non-trivial.
The second is that the overhead of cgroup migration is non-
negligible and cannot be solved by current approaches.

4.2.1 Rootfs Reconfiguration The standard container
rootfs typically consists of multiple mountpoints within a
per-container mount namespace, often using a base union
filesystem like overlayfs for the root directory. Notably, many
dependencies (e.g., glibc, language interpreters) are common
across functions. Instead of switching the entire rootfs, our
approach focuses on swapping only the function-specific
dependencies. By exploiting the flexibility of Linux mount-
points, we overmount another union filesystem atop an exist-
ing path, effectively “replacing” its contents, as shown in Fig-
ure 9. More precisely, after purging modifications from pre-
vious instances, TRENV dynamically mounts and unmounts
separate overlay filesystems tailored to specific function
dependencies. TRENV further enhances this procedure by
maintaining a pool of function-specific overlayfs, instead of
discarding them after unmounting.

Compared with Cold Start. Typically, preparing a rootfs for

containers from scratch requires many system calls, includ-
ing more than 9 mount, 6 mkdev, 6 mknod and 1 pivot_root
calls to Linux. TRENV, however, requires only 2 mount at
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Figure 9. An example of rootfs reconfiguration. The red box
indicates the mountpoint.

minimum for function-specific dependencies and /proc, ef-
ficiently reusing other mountpoints.

Compared with Lightweight Container. Many prior studies
have adopted lightweight containers to overcome the isola-
tion bottleneck. For example, SOCK[59] has proposed a lean
container, using chroot and read-only bind mounts to set up
its rootfs rapidly. However, according to the Linux manual
page [7], chroot is not intended for full process sandboxing,
and Sun et al. [70] have underscored its security limitations,
which is susceptible to several potential “escape” attacks. In
contrast, TRENV still adopts the mount namespace as stan-
dard containers, which provides more robust isolation.

Compared with Zygote Container. Prior research, such as Pa-

gurus [54], suggests a “zygote” container that can help vari-
ous functions. In Pagurus, each function-specific directory is
assigned a unique owner, and the user ID of the function pro-
cess is dynamically adjusted to access the corresponding di-
rectory. However, it merely provides read-only access. TRENV,
conversely, leverages the copy-on-write feature of overlayfs
to emulate an ideal single-tenant environment with no re-
strictions on writable paths. Moreover, zygote containers
require additional initialization steps when helping other
functions, such as loading unique libraries and user codes,
leading to longer latency than TRENV.

4.2.2 New Cgroup Feature Utilization As discussed in
§3.1, cgroup migration suffers from significant latency. To
understand the root cause of this latency, we employed
ftrace [29] to analyze the call graph in Linux during mi-
gration. We find that two global read-write semaphores
in the cgroup_attach_lock() and cpuset_can_attach()
are the leading cause. The underlying RCU (Read-Copy Up-
date) synchronization, integral to semaphore implementa-
tion, is inherently time-consuming as it necessitates waiting
for a grace period to ensure successful write locking.

TrRENV employs the CLONE_INTO_CGROUP feature, a recent
Linux enhancement for task creation. It significantly speeds
up the procedure by assigning a specific cgroup to a process
at the time of spawning, rather than post-creation. Now the
workflow in TRENV is: (1) create the cgroup and (2) assign the
cgroup directly while spawning container processes. Since
the process is still invisible to other OS components while
spawning, the kernel can bypass the costly synchronization
in cgroup migration. Despite its efficiency, this feature has



yet to be adopted in mainstream container runtimes (e.g.,
runc). In our evaluation, it typically takes only 100 to 300 ps.

5 Discussion

In this section, we further discuss the security and deploy-
ment costs of TRENV.

(1) Security: TRENV involves reusing or repurposing certain
container components, as outlined in Table 1. It is essential to
assess the extent to which this reuse may introduce potential
security vulnerabilities.

(2) Deployment Costs: TRENV optimizes memory restoration
and utilization by leveraging emerging hardware technolo-
gies (e.g., CXL and RDMA). This approach presents a tradeoff
between the benefits gained and the additional deployment
costs incurred.

5.1 Security

The mm-template APIis implemented through a set of ioctl
calls on a pseudo-device driver. To ensure its usage is con-
trolled, only users with root privileges can access that device.
For repurposable sandboxes, the design aims to provide a
level of security and isolation that is equivalent to or exceeds
that of existing container-based systems. In the following, we
first examine the security implications associated with the
reused kernel objects (i.e., container components). We then
analyze other security limitations inherent in the current
implementation of TRENV. Finally, we explore the potential
for extending TRENV to work with the VM to meet the higher
security requirement in production systems.

5.1.1 Reused Kernel Objects
Network namespace (netns). Lightweight containers (e.g.,
used in Mitosis [76]) do not employ netns, leading all in-
stances to share the same network environment. In contrast,
TRENV assigns a separate netns to each instance. During
repurposing, the previously opened network connections
will be forcibly terminated to prevent data leakage. However,
certain states, including the network configurations (e.g.,
firewall rules and routing tables) and statistics (e.g., received
bytes of the veth interfaces), are preserved. Many serverless
functions, including all evaluated in our study, do not modify
network configurations. Therefore, these residual states do
not expose data generated during function execution. For
other functions that customized the network, these states
can be reset as needed to ensure security.
Rootfs. Each rootfs contains a mount namespace and a union
filesystem. Its security implications has been discussed in
§4.2.1. During repurposing, TRENvV first kills the processes,
and then purges the file modifications of the previous in-
stance. Thus, TRENV does not leak any data, including mem-
ory or files, produced by the processing of the last function.
Cgroup. The reuse of cgroup is confirmed and adopted by
production systems like Rund [53]. Still, TRENV provides a
cgroup per instance, as standard Docker containers.

A “share” strategy has been proposed by Pagurus [54]. A
pool of zygote containers is maintained to mitigate cold start
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overhead. Nevertheless, all child containers forked from the
same zygote container share the isolated components (e.g.,
rootfs and netns), resulting in poorer isolation compared
with TRENV.

5.1.2 Security Limitations Although TRENV prevents data
leakage and enforces the proper level of isolation during re-
purposing, there are other potential security limitations.

(1) ASLR (Address Space Layout Randomization). In TRENV,
all restored container instances share the same memory lay-
out (e.g., the virtual address of the stack) as the mm-template
they are attached during restoring, preventing ASLR from
introducing randomness. This issue is prevalent in all Check-
point/Restore and fork-based schemes, where restored or
forked containers inherit the virtual address layout of the
snapshot or parent process.

(2) Side-channel attacks related to memory deduplication
across functions [78]. A possible solution is to only enable it
for functions from the same users.

(3) Data protection during transfer. For CXL, the 2.0 specifi-
cation propose security features, such as IDE (Integrity and
Data Encryption). For RDMA, it is possible to encrypt the
memory images during transfers.

5.1.3 Applying TRENV to VMs Containers are generally
considered less secure than (micro-)VMs, due to their reliance
on a shared kernel across all execution environments and the
host. However, the methodology of TRENV can be adapted
to VMs, for example by creating a pool of repurposable VMs,
to meet the security requirements necessary for production
environments.

(1) Many hypervisors, including RunD and Cloud Hypervi-
sor [17], support virtio-fs [18], a shared filesystem for VMs.
It allows the rootfs within the guest to be a directory on the
host. Thus, the rootfs of VMs can be reconfigured on the
host by TRENV.

(2) The hypervisor still needs to execute in an isolated en-
vironment on the host. For example, Firecracker [19] needs
to run inside a “jail”, with independent cgroup and names-
paces. The relevant cgroup optimization and netns reusing
in TRENV can be applied directly.

(3) VM’s lazy restore approach can be further optimized by
pre-populating the EPT (extended page table) for hot memory
regions with the help of mm-templates. This avoids trigger-
ing a VM exit due to a page fault on first access, thereby
enhancing execution efficiency.

5.2 Deployment Cost

For RDMA-based deployment, there is no additional cost
since cloud providers already offer RDMA devices (e.g., eRD-
MA [32], EFA [82]) in production. For CXL-based deploy-
ment, a quantitative cost analysis is currently not feasible
because CXL 2.0 switches are still in the demo phase. How-
ever, we are confirmed from manufacturers that memory
expanders’ and switches’ price will be comparable to DDR5
DIMMs and IB switches, respectively. Previous works [27]



showed that the cost of switches and multi-headed memory
controllers are within 5% of the original servers, at the scale
of 16 sockets. Thus, we anticipate rack-level deployment of
CXL memory pools will be available at an acceptable cost
in the near future, motivating our work. A rack-level mini-
cluster with around 10 machines and 20TB memory would
be sufficient to capitalize on the benefits of TRENV.

Regarding the energy cost for occupying DRAM and the
comparison with pre-warm/keep-alive approaches, TRENV
reduces the overall memory footprint by enabling cross-
machine-intra-rack deduplication. Only one copy is needed
per rack if it is read-only, reducing the cost by a factor of
the number of machines (~10). In contrast, each kept-warm
container requires an independent copy, leading to excessive
duplication and memory costs.

For larger clusters, it is possible to blend CXL (intra-rack)
and RDMA (inter-rack), by adjusting the mm-template, to
further enhance the scalability.

6 Evaluations

6.1 Methodology

TRENV’s implementation includes 2900 lines of code (LoC)
modifications to CRIU, 3500 LoC alterations to v6.1 Linux,
and an RDMA server with 700 LoC. The key addition in CRIU
is the “repurpose” command, which extends the existing
“restore” command and is integrated into faasd [40].
Testbed. We conducted evaluations of TRENV using memory
pools based on both CXL and RDMA technologies, termed T-
CXL and T-RDMA in the following sections, respectively. The
test platform was equipped with dual 32-core Intel Xeon Gold
6454S CPUs, 256 GB of RAM, and a 7 TB Samsung PM9A3
SSD. Additionally, the platform was connected to a 128 GB
experimental Samsung CXL memory device and a Soft-RoCE
RDMA device. In our tests, the latency for accessing remote
memory was 641.1 ns for CXL and 6 ps for RDMA.
Evaluated Functions. Our method is universally applicable
across diverse language runtimes and is able to handle multi-
threaded and multi-process scenarios. Thus, for our evalua-
tion, we selected a wide range of applications from SeBS [35]
and Function-Bench [49] (Table 2). Given the prevalent use
of Node.js and Python by AWS Lambda developers[36], we

Table 2. The evaluated functions. The last column shows
the number of threads that need to be restored.

Func ‘ Lang Description Mem Size  # Thread
DH | Py Dynamic web pages generating.  50.4M 14
JS Py Deserialize and serialize json. 94.9M 14
PR Py Pagrank algorithm. 116M 395
IR Py Deep learning (ResNet). 855M 141
P Py Image rotating and flipping. 67.1M 15
VP Py Gray-scale effect on video. 324M 204
CH | Py HTML tables rendering. 94.9M 38
CR Node AES encryption algorithm. 124M 16
JJs Node  Similar to JS. 111M 21
IFR | Node Similar to IP. 253M 21
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also ported several Python (Py) functions to Node.js (Node).
This further highlights TRENV’s ability to repurpose between
heterogeneous languages.

Baselines. TRENV is based on faasd, a widely used serverless
platform that not only provides a baseline for our compara-
tive analysis but also supports CRIU natively.

Additionally, the current predominant approach to mitigat-
ing cold start issues in serverless computing is “lazy restora-
tion”, which prioritizes the recovery of essential states and
delays other tasks (e.g., memory content restoration) until
necessary. Thus, we also compare TRENvV with REAP and
FaaSnap, two state-of-the-art lazy restoration methods that
utilize Firecracker. Notably, FaaSnap builds on top of REAP
by introducing an asynchronous prefetch policy. Each guest
for FaaSnap and REAP has 2 vCPUs and 2 GB memory.

During our evaluation, we noted that the network con-
figuration phase during Firecracker initialization introduces
significant overhead, which can reach up to 600 ms under
scenarios of high load and concurrency. This overhead allows
TrRENV to outperform them substantially. To facilitate a more
meaningful comparison, we developed a network namespace
pool for both REAP and FaaSnap. After a virtual machine
(VM) is terminated, its network environment is recycled into
this pool for later reuse, analogous to our repurposable sand-
box pool. We refer to these enhanced implementations as
REAP+ and FaaSnap+, respectively.

Schedule Policy. We implement a widely used scheduling
policy across all evaluated methods. After the invocation,
instances are retained in a container pool for a fixed duration
(e.g., 10 minutes) akin to Openwhisk [12], commonly referred
to as keep-alive. This approach allows for the immediate
reutilization of cached instances for new invocations of the
same function. The container pool works as a Least Recently
Used (LRU) list, organized by the most recent activity.
Workloads. We assessed the performance of TRENV using
both synthetic and real-world workload traces. Specifically,
bursty loads and diurnal patterns are the two most com-
monly observed patterns in real-world serverless platforms
that lead to load instability and thus diminish the effective-
ness of the keep-alive strategy [42, 54, 62, 64, 67, 73]. To
accurately simulate these conditions, we designed two spe-
cific workloads: W1 and W2. W1 replicates bursty traffic
patterns, with intervals between consecutive bursts longer
than the keep-alive threshold. In contrast, W2 emulates di-
urnal traffic fluctuations, cycling through various functions
under tight memory limits (a soft memory cap of 32GB is
applied in W2, compared to the 64GB used in other tests). To
further substantiate TRENV’s utility in practical scenarios,
we also incorporated industry traces from Azure [64] and
Huawei [48] into our evaluations.

To ensure the effectiveness of traditional caching mecha-
nisms, all tests include a warm-up phase of about 5 minutes.
Additionally, snapshot images of CRIU, REAP, and FaaSnap
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are stored on a CXL-memory-backed tmpfs to eliminate disk
overhead, ensuring a fair comparison with T-CXL.

In the following evaluation, we focus on the following
aspects. (1) Performance (§6.2, §6.3): What is the benefit
of TRENV on end-to-end latency, especially under concur-
rency and the P99 latency? (2) Memory utilization (§6.2,
§6.3): What is the benefit of TRENV on the reduction of mem-
ory usage? (3) Optimization Breakdown (§6.4): What is
the contribution of each optimization proposed by TRENv?
(4) Memory Pool Comparison (§6.5): What is the differ-
ence between CXL and RDMA memory pool?

6.2 Representative Workload

Figure 10 displays the cumulative distribution function (CDF)
of end-to-end (E2E) latency for functions within the W1 and
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W2 workloads, capturing over 4k invocations in 30 minutes.
For clarity, the x-axis shows the logarithmic scale (base 2)
latency, and the results for CRIU and faasd are partially
truncated due to their relatively longer latencies.

As a summary, in terms of tail latency, T-CXL consistently
outperforms all other solutions, achieving a speedup rang-
ing from 1.11X-5.69% (1.17x-18X) for P99 latency and up to
5.9% (8.6%) for median latency, compared with REAP+ (FaaS-
nap+). The superior performance primarily stems from T-
CXL’s reduced execution time, as FaaSnap+ and REAP+ incur
more context switches and on-demand restoration overheads,
particularly under conditions of high concurrency. T-RDMA
also shows promising performance; however, it does not per-
form as well in certain scenarios due to the higher latency
associated with RDMA access compared to the CXL-backed
tmpfs used in REAP+ and FaaSnap+.

Regarding memory utilization, as detailed in Figure 11a,
T-CXL achieves an average reduction in memory usage rel-
ative to faasd, CRIU, REAP+, and FaaSnap+ in W1 and W2
by 37.4%, 61.2%, 58.2%, and 51.5%, respectively. T-RDMA
exhibits a comparable level of memory savings. These im-
provements are attributed to memory sharing, deduplication,
and reduced number of instances to keep in memory, thanks
to our repurposing technique that allows for the effective
share of execution environments across various functions.
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6.2.1 Comparing with CRIU and faasd The suboptimal
performance of CRIU and faasd stems from their high startup
latency. As given in Table 1, creating isolation environments
can take over one second under conditions of heavy loads
and high concurrency. Additionally, faasd encounters delays
due to application initialization during cold starts, whereas
CRIU’s restoration process is hampered by the expensive
copy-based memory restoration. For instance, launching a
CR instance takes 1.7 s at P99, whereas its execution time is
only about 500 ms. Thanks to our repurposable sandboxes
and mm-templates, TRENV significantly reduces the costs
associated with isolation environment creation and mem-
ory restoration. It takes merely 15 milliseconds for T-CXL to
start the same CR instance at P99, representing a reduction of
more than 100x. In §6.4, we will explore the individual con-
tributions of the repurposing and mm-template techniques.

T-CXL relies on CXL, which has higher latency than local
DRAM, resulting in degraded execution performance. This
explains CRIU’s better P50 IR performance in Fig 10. For in-
stance, T-CXL nearly doubles the execution time of DH and
IR due to their short runtimes (<100 ms), while other func-
tions see about a 10% increase on average. However, during
cold starts, T-CXL’s E2E latency is significantly lower than
CRIU’s, thanks to its efficient startup process. Additionally,
performance can be improved by configuring mm-templates
to store hot regions of memory image in local DRAM.

6.2.2 Comparing with REAP+ and FaaSnap+ Both REA-
P+ and FaaSnap+ are based on Firecracker. While the pri-
mary focus is on enhancing security, the additional layer
of the hypervisor facilitates efficient state restoration. De-
spite the reduced gap, TRENV, which is container-based, still
achieves better start latency. For example, it takes only 13
ms to start an instance of CH at P99, compared to 49 (90)
ms for FaaSnap+ (REAP+). Moreover, Firecracker leads to
significantly higher memory consumption (as shown in Fig-
ure 11a) than containers, due to each guest OS maintaining
exclusive resources, such as page caches. A microbenchmark,
illustrated in Figure 11b, further highlights this issue. When
starting 50 function instances, we observed that FaaSnap and
REAP even doubled the memory usage compared to T-CXL.
In addition to startup latency, TRENV achieves lower tail
latency than both REAP+ and FaaSnap+ due to its much more
stable and shorter execution time. REAP and FaaSnap use
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a lazy restore approach that only delays, rather than elimi-
nates, restoration overheads during execution, especially for
memory. For instance, handling each page fault still requires
several microseconds by the OS, even when their snapshots
are stored on a CXL-based tmpfs. In contrast, TRENV eagerly
restores most states instead of on-demand, such as opened
files. Further, by leveraging CXL’s byte addressability, mm-
template avoids page faults for read-only pages. According
to our investigations, about 24% to 90% of the pages used
during execution are read-only. Thus, as illustrated in Figure
12, the execution time for TRENV is considerably shorter
than that for REAP+ and FaaSnap+.

6.2.3 The effect of function characteristics Different ap-
plications exhibit distinct characteristics that influence their
performance. The functions we evaluated can be categorized
into three groups. (1) Memory-insensitive applications, such
as compute—intensiv_e (like VP and IP) and I/O-intensive (like
CH) applications. The latency for these applications does
not show a significant disparity among different methods,
as they are primarily CPU-bound or I/O-bound rather than
memory-bound. As a result, the differences in E2E latency
between CXL, RDMA, and even userfaultfd-based page faults
(used in REAP) are not evident. (2) Applications with a large
memory footprint and complex memory access patterns, in-
cluding IR, PR, and IFR. They lead to more minor page faults
in REAP+ and FaaSnap+, resulting in longer execution time
than T-CXL. T-RDMA can also experiences longer tail la-
tency, especially during burst, due to unstable P99 latency of
RDMA under high request rates. (3) Applications with brief
execution time, which is common in serverless scenarios,
including DH, JS, CR and JJS. Any extra overhead, such as
minor page faults in FaaSnap or REAP, and longer latency for
RDMA, significantly impacts their E2E latency. The shorter
startup latency and zero cost for read accesses in T-CXL
demonstrate more pronounced effects for these functions.

6.3 Real-world Workload.

To further justify the effectiveness of our designs, we tested
TRENV under two industrial and complex workloads (Fig-
ure 13). As both datasets only record the number of invoca-
tions per minute, we randomly distributed those within each
minute, with a probability of creating skew or bursty loads
to imitate real-world conditions.

In summary, for tail latency, T-CXL achieves speedups
ranging from 1.06X-7.00x and 1.16X-9.25X compared with
REAP+ and FaaSnap+, due to our shorter execution time un-
der heavy loads. T-RDMA falls behind REAP+ and FaaSnap+
in JS, VP, CH, CR, and PR. The unstable P99 memory access
latency of RDMA still incurs a delay in these heavy-load
scenarios. Nevertheless, T-RDMA still achieves a speedup
of 1.29%-4.28x and 1.11Xx-4.64x against REAP+ and FaaS-
nap+ for other functions. As shown in Figure 11, T-CXL and
T-RDMA reduce memory usage by over 25% compared to
all baselines in both workloads. Specifically, T-CXL reduces
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Figure 13. P99 E2E latency for read-world workloads, nor-
malized against REAP latency. Each bar is divided into two
segments: the upper un-hatched represents execution time,
and the lower hatched indicates startup time. Top numbers
are the speedup of T-CXL compared to REAP+.
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Figure 14. Optimization steps and its effects to E2E latency.
The green line indicates the E2E latency of FaaSnap+.

memory usage by up to 49% relative to REAP+ and FaaS-
nap+. T-RDMA consumes, on average, 10% more memory
than T-CXL.

6.4 Breakdown of Optimization Steps

To delve deeper into the contribution of each optimization,
we analyzed the E2E latency by enabling different optimiza-
tions in TRENV step by step.

In Figure 14, the “Reconfig” optimization applies sandbox
repurposing without cgroup optimization, reducing startup
latency by approximately 200 ms. Regarding rootfs recon-
figuration, one subtask of the repurpose, it takes more than
30 ms to restore the rootfs and mount namespace in CRIU.
In contrast, TRENV’s reconfiguration process involves only
two system calls and typically completes rootfs preparation
in less than 1 ms. Additionally, the “Cgroup” optimization
employs the CLONE_INTO_CGROUP to bypass synchronization
delays within the kernel, further reducing startup latency by
49 ms for IR and 13 ms for JS.

After that, the function’s startup latency is predominantly
governed by memory restoration (>85%). TRENV reduces this
cost through mm-template. First, it only needs to copy a
small amount of metadata rather than the memory pages.
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Figure 15. Normalized execution latency of T-CXL and T-
RDMA. The hatched bar indicates P75 latency, while the
un-hatched bar indicates P99 latency.

For example, the metadata is less than 400 KB, while the
memory contents exceed 70 MB for JS. Second, it eliminates
the need for reconstructing the virtual memory layout since
it is already preserved in the mm-template, thus avoiding
numerous mmap () system calls in CRIU. The larger the mem-
ory footprint, the greater the reduction in startup latency
achieved by mm-template. The mm-template alone reduces
startup latency by 290 ms for IR and 67 ms for JS, allowing
TRENV to launch an IR and ]S instance in just 18 ms and 8
ms, respectively.

Utilizing the mm-template with a remote memory pool
leads to a slight increase in execution time compared to
when local DRAM is used, because of the inherently longer
access latencies associated with CXL and RDMA memory.
Specifically, an additional 24 ms (88 ms) for IR and 11 ms (25
ms) for JS, are observed for T-CXL (T-RDMA), compared to
CRIU. Nonetheless, the overall E2E latency still experiences
a substantial reduction.

We also evaluated the “Cgroup” (i.e., enable repurposable
sandboxes but without mm-template) with industrial work-
loads: T-CXL still outperforms “Cgroup” in all functions,
achieving the speedup ranging from 1.04X to 2.32X.

6.5 TRENV-CXL vs. TRENV-RDMA

The flexibility of TRENV enables it to leverage various inter-
connect technologies. However, the differing physical char-
acteristics of CXL and RDMA lead to disparities in execution
time. As shown in Figure 15, T-CXL outperforms T-RDMA
across all functions, with speed increases ranging from 1.04x
to 3.51x for P75 latency. This improvement is attributed to (1)
the faster access latency of CXL memory, and (2) the utiliza-
tion of CXL'’s byte-addressable feature. The zero additional
software-level cost for read accesses with mm-templates
allows T-CXL to eliminate page faults that T-RDMA encoun-
ters for read-only pages. Analysis of our evaluated functions
reveals that a significant portion of the memory pages are
read-only, ranging from 24% to 90%.

Furthermore, the disparity in P99 latency between T-CXL
and T-RDMA is even more pronounced than at P75. Under
extreme loads at P99, the heavy RDMA traffic exacerbates
CPU load and flow interference, and increases contention
for network resources such as the switch [81] and RDMA



NIC [34]. Several works report similar observations, with this
performance cliff being nearly fivefold in instances of burst
traffic [50]. In contrast, CXL memory offers higher IOPS and
more stable latency at P99. CPU usage monitored during
two industrial tests with mpstat shows that T"-RDMA’s total
CPU usage is 1.24%x and 1.23x higher than T-CXL for Azure
and Huawei traces, respectively.

Figure 11b also demonstrates that for read-heavy functions
like IR, T-CXL primarily accesses remote memory directly,
avoiding the allocation of local pages. It substantially saves
memory (43.5%) compared to T-RDMA. Conversely, for write-
heavy functions like IFR, T-CXL shows lesser memory gains
(13%) as both trigger COW for write access.

Nonetheless, since all states in the memory pool are read-
only, a multi-layered architecture that strategically places hot
pages in CXL and cold pages in RDMA, integrates seamlessly
with our approach. The specific cache eviction strategies are
orthogonal to our core implementation.

7 Related Work

Sandboxing techniques. Prior research has explored vari-
ous sandboxing techniques like micro-VMs [10, 19, 53], light-
weight containers [59], unikernels [31], and WebAssembly-
based sandboxes [43, 65, 80]. The current implementation of
TRENV primarily focuses on containers.

Caching and pre-warm. Prior studies have sought to re-
duce the overhead of cold starts by employing caching or pre-
warming techniques. After execution, the platform may keep
the container alive for a certain duration, reusing it if the
same function is invoked again within that period. Besides,
the platform may pre-start containers for functions that are
likely to be executed soon. Some platforms utilize fixed keep-
alive times or static pre-warm strategies [12, 75], while re-
cent research has explored heuristic approaches [42, 62, 64],
including the use of machine learning models [77]. TRENV
takes a different approach by directly reducing cold start
overhead, thereby eliminating the need for designing those
complex strategies. Groundhog [22], a lightweight sequential
request isolation system, restores memory to a “clean” state
before reuse in its caching strategy. In contrast, TRENV fo-
cuses on mitigating cold start overhead by sharing resources
across different functions and hosts. Additionally, TRENV is
capable of providing functionality similar to Groundhog by
fully restoring the container state after each execution.
Utilization of “fork”. Several studies have investigated the
use of the OS ‘fork’ primitive for efficiently initiating new
instances from a cached container or zygote [38, 39, 54, 59].
Moreover, MITOSIS [76] enhances the OS by implementing
a remote fork primitive that enables the use of states from
remote machines. While TRENV shares some similarities with
MITOSIS, there are significant differences.

Firstly, MITOSIS utilizes less-isolated, lightweight contain-
ers to reduce isolation costs, which results in compromised
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isolation levels, as discussed in Section 4.2.1 and 5.1.1. Sec-
ondly, MITOSIS is currently limited to supporting single-
thread functions. Overcoming this limitation typically re-
quires specialized solutions that involve both the language
runtime and the OS levels, complicating the development of
a universal “fork” solution. In contrast, TRENV is built upon
CRIU, which supports the restoration of multi-threaded and
multi-process environments more robustly. Although MI-
TOSIS achieves startup latencies of less than 4 ms for many
single-threaded functions, initializing real-world serverless
functions that involve multiple processes and threads is in-
herently more complex and costly. Furthermore, while both
MITOSIS and TRENV utilize kernel-space RDMA, MITOSIS
depends on a single container (i.e., the parent) to fork from,
thus focusing primarily on optimizing RDMA’s scalability. In
contrast, TRENV leverages disaggregated memory, focusing
on how memory is transparently shared. Moreover, TRENV
is designed to accommodate various types of disaggregated
memory technologies, including RDMA and CXL.

Storage Systems. Many researchers have tried to optimize
serverless computing by enabling more efficient state trans-
fer [61, 68, 74]. They build scalable and distributed storage
or cache systems. These works are orthogonal to TRENV and
can be integrated to enhance TRENV’s I/O performance.

8 Conclusion

We introduced TRENV, a serverless platform providing ex-
treme elasticity through sharing as many resources as pos-
sible. It makes use of repurposable sandboxes to reduce the
isolation environment overhead, and mm-templates to en-
able rapid restoration from the disaggregated memory. The
evaluation of TRENV shows that memory consumption can
be reduced by 48% on average, and P99 startup latency can
be accelerated by up to 7X, compared to SOTA lazy restore
approaches (FaaSnap and REAP).
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