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a b s t r a c t

Data Integration is becoming very important in many commercial applications and scientific research.
A lot of algorithms and systems have been proposed and developed to address related issues from
different aspects. Virtual database systems are well-recognized as one of the effective solutions of data
integration. The existing execution modules in virtual database systems are very ineffective. MapReduce
(MR) is a new computing model for parallel processing and has a good performance on large-scale data
execution. In this paper, we propose a new distributed data integration system, called VDB-MR, which is
based on the MapReduce technology, to efficiently integrate data from heterogeneous data sources. With
VDB-MR, a unified view (i.e., a single virtual database) of multiple databases can be provided to users.
We also conducted a series of experiments to evaluate VDB-MR by comparing it with an open source
data integration system OGSA-DAI and two DBMSs in parallel. Experiment results show that VDB-MR
significantly outperforms OGSA-DAI and the DBMSs in parallel.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Nowadays, data integration is becoming important in many
commercial applications and scientific research. It integrates
multiple databases and heterogeneous resources on the Internet
so that a unified view of these databases and resources can
be provided to users. Many approaches and systems have been
proposed and developed to achieve data integration [1–11], having
the same or a similar objective: providing flexible and efficient
access to information residing in a collection of distributed,
heterogeneous and overlapping resources such as databases, plain
texts, file systems, distributed file systems, XML files, World Wide
Web, and many other information sources.
As one of the existing data integration approaches, virtual

database is, however, composed of a set of models, which
specify the structural characteristics of data sources, views and
web services. Many systems based on these models have been
developed to deal with various real problems of data integration.
On the Internet, virtual databases are used to collect information
from different sites in order to provide complete information
about books and other commodities [3]. In the environment
research field, they are also a useful approach to integrate spatially-
related environmental data so that advancedWeb-based retrieval,
analysis and visualization of these data can be facilitated [2].
In E-commerce systems, virtual databases act as a ‘‘broker’’
to aggregate information from multiple enterprise systems for
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the purpose of reducing costs associated with inter-business
transactions and improving information accuracy between co-
operating businesses [4].
A typical structure of a virtual database, as shown in Fig. 1, is

composed of four components: Mapper, Publisher, Executor, and
Wrapper. Mapper usually specifies a global schema according to
the information contained in the entire collection of resources.
Publisher provides a query language for users to access the system
and operate data shown by the global schema. Algorithms are
designed to interpret this query language and decompose each
global query into sub-queries on physical resources. Executor is
in charge of executing these sub-queries in their corresponding
resources,merging query results, anddealingwith possible conflict
and inconsistency of the query results. Wrapper (or Adapter)
directly connects to the resources, translates the sub-queries into
the form that the resources can comprehend, and standardizes the
answers.
Much research work has been done to address issues as to

how a global schema is extracted from autonomous resources,
how an effective query language is identified, and/or how
decomposing queries are optimized [12,13]. However, research on
query execution has not been given sufficient attention. One may
suggest that query execution in virtual databases canbe considered
as a problem of query execution in distributed databases.
However, these two query mechanisms have vast differences in
many aspects, especially in terms of the high-level autonomy
and heterogeneity between member resources systems, for the
following reasons. First, communication autonomy in multi-
resource systems means that member resources independently
determine what to share, and when and how to participate in a
global system. Second, design autonomy makes it impossible to
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Fig. 1. Typical structure of a virtual database.

optimize resources of each member in terms of the needs of the
whole system, as members do not indeed have that obligation.
Third, execute autonomy leads to the result that the whole system
is not able to decide how the processing is carried out in each
member [14]. In this paper, more attention will be paid to the
query execution for higher efficiency, compared with traditional
data integration approaches.
MapReduce [15,16] is a software framework introduced by

Google to facilitate processing and generating huge datasets on a
large number of computers/nodes. It is simple since it only contains
two independent operations: Map and Reduce. MapReduce allows
for distributed processing of these two operations. MapReduce is
best suited for executing large-scale datasets in parallel and has
well proved success in Google [15] and Hadoop communities [17].
MapReduce has been successfully applied in the database field,
for example Amazon Dynamo [18] and HadoopDb [19]. But these
works mainly focus on isomorphic data resources stored in the
form of key-value. To the best of our knowledge, no work has been
done to apply MapReduce for data integration of heterogeneous
data resources such as database or file systems.
The objective of our research is to provide a solution for dis-

tributed data integration of virtual databases by utilizing the
MapReduce technology. In this paper, we propose a distributed
data integration system, named as VDB-MR, based on the MapRe-
duce technology, to efficiently integrate data from heterogeneous
data sources. In order to provide uniform access to users; a SQL-
like query language is also particularly designed for VDB-MR. Con-
sidering the relativity with lower datamanagement technology, as
well as execution efficiency, we developed a flexible implementa-
tion of MapReduce independently for our VDB-MR. With VDB-MR,
a unified view (i.e., a single virtual database) of multiple databases
can be provided to users. A series of experiments are conducted to
evaluate VDB-MR by comparing it with an open source data
integration system OGSA-DAI and two DBMSs in parallel. Ex-
periment results show that VDB-MR significantly outperforms
OGSA-DAI and the DBMSs in parallel.
The rest of the paper is organized as follows. In Section 2,

we present the architecture of VDB-MR. Section 3 discusses
the MapReduce-based implementation of VDB-MR. In Section 4,
the experiments are discussed and the experiment results are
presented and analyzed. Related work is given in Section 5 and we
draw the conclusion in Section 6.

2. Architecture of VDB-MR

In this section, we discuss the overall architecture of VDB-MR
(Section 2.1) and a SQL-based query language particularly designed
for VDB-MR (Section 2.2).
Fig. 2. Architecture of VDB-MR.

2.1. Architecture

The overall architecture of the distributed data integration
system we propose in this paper, VDB-MR, is presented in Fig. 2,
which is based on the virtual database system described in [20].
The architecture of VDB-MR is similar to the typical structure of
virtual database presented in Fig. 1. The objective of VDB-MR is to
integrate data in disparate databases and file systems and provide
a uniform access to users. A SQL-like query language is particularly
designed for VDB-MR and will be described in Section 2.2 in
detail. As the brain of the system, the parser engine manages the
global schemawhich specifies theway users performmapping and
queries. The execute engine is however the body of the system. It
collectsmetadata frommember resources, optimizes and executes
query processing. Because the parse engine and execute engine
of VDB-MR are dispatched in a cluster, how to improve parallel
execution efficiency is an important research issue, which will be
discussed in Section 3.

2.2. SQL-based query language

Though we mainly focus on data management, the set of
query syntaxes specified in our query language also includes
syntaxes for users and resources management. Virtual database
provides interfaces like a standard database management system
(DBMS), so our query language is naturally based on SQL, including
basic operations such as Select, Delete, Update. Additionally, some
other operations are newly proposed for the purpose of efficient
management of distributed systems. In the rest of the section,
we describe four important operations (i.e., Map, Select, Join, and
Update) of our SQL-based query language with the emphasis on
query execution.

2.2.1. Map
Map is a very import operation, which specifies how a virtual

database or a virtual table links to real resources. Its basic
regulation expression is provided below.

$map =Map Vtable $vtable_name[($attribute_name
[, attribute_name])]

From $resource [ And $source];
$source= $resource_name:$table_name($map_attribute

[, $map_attribute]);
$map_attribute= $null | $resource_table_attribute_name

As mentioned previously, the wrapper of VDB-MR provides
uniform interfaces like a DBMS for difference resources. The Map
operation is used to map a virtual table into several tables in
different resources, so that the execution of the virtual table can be
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Fig. 3. Two kinds of map operations.

transferred to the real table. There are two kinds of Map: vertical
map and horizontal map, as shown in Fig. 3. In vertical map, the
attribute number of resources tables does not necessarily equal the
attribute number of virtual tables, while in horizontal map, they
must be equal.
Themapoperations have the following characteristics. First, it is

valid to have vertical and horizontal maps in the same map query.
Second, each primary key of a virtual table must be mapped into
an attribute of at least onemapped resource table. For example, the
primary key of the virtual table shown in the verticalmapof Fig. 3 is
user_id, and it must bemapped into an attribute for each real table,
as id and member_id in this example. Third, Key is an important
feature of a database table; it guarantees the data validity and
prevents data from confliction. Fourth, only if every resource table
provides all correlated attributes of the key attributes defined
in a virtual database, can we then consider this map as a legal
operation.
After the map operation, the mapping result is stored in

the Parser Engine, so that the query for the virtual table can
be translated to execution for the real table according to the
corresponding relation of the attribute.

2.2.2. Select
As opposed to the complex syntax of the select operation of SQL,

the select operation of our query language is however very concise;
it does not support nested queries. This is because such a simple
select operation can satisfy most query requirements: complex
queries can be achieved by combining map, simple select and
join operations, and a well-designed schema of virtual database
systems rarely requires complicated select operations like the one
provided in normal SQL. The basic regulation expression of the
select operation of VDB-MR query language is given as follows.
$select= Select $select_expr [Into $new_vtable_anme]
From $vtable_name [Where $where_condition]
[Order By $attribute_name [, $attribute_name];

$select_expr= * | ($attribute_name [, $attribute_name])

2.2.3. Join
The join of the VDB-MR query language is also a simplified

version of the join operation of SQL. Its regulation expression is
provided as follows.
$join= $table_reference Join $table_name
[On $condition_expr]
[Order By $attribute_name [, $attribute_name]];

$table_factor= $table_name | $select
The join also just supports equivalent expressions. In other

words, we only consider the execution of equivalent joins.
2.2.4. Update
The update operation is used to update data in different tables

and it is an integration of a series of operations such as update,
delete, and insert. Their syntaxes aremainly similar to those in SQL,
see Reference [21] for more information.

3. Implementation of VDB-MR execute engine

Although the MapReduce technology is applied in VDB-MR,
we do not utilize any available open source implementations
of the MapReduce technology because of the following three
reasons. First, VDB-MR requires an open environment for a
variety of experiments in terms of query decomposition and
execution. Many existing MapReduce systems cannot satisfy
this requirement. Second, some existing implementations of
MapReduce are not flexible to be configured for the purpose of
query execution optimization. Third, third-party implementations
may contain undesired components which may degrade query
execution efficiency. With all these concerns, we developed a
flexible implementation of MapReduce for VDB-MR, which is
suited to execute query processing and is more convenient for
our experiments. In the rest of the section, the structure of our
MapReduce-based Execute Engine is discussed first, followed by the
query execution strategy we propose in the paper.

3.1. Structure of our mapreduce-based execute engine

The structure of our MapReduce-based Execute Engine is
presented in Fig. 4. Execution Engine is a distributed parallel
system, of which the smallest unit is the process. We call each
process of the execution engine a worker. Compared with the
MapReduce structure described in [15], our system is more
complicated since we want to provide more interfaces for the
experiments and function extension. Our experiment results
(Section 4) show that it is valid.
Besides the three commonly contained processes (map-only

process, MapReduce process, and reduce-only process), there
are two other important processes: manage process and collect
process in our system. As shown in Fig. 4, the execute engine
controller sends a list of queries to a worker during the manage
process and the worker assigns MapReduce tasks to the master
worker,which is responsible of directing all the slaves (all the other
workers) in doing their work. Notice that a worker is an atomic
element executing tasks in a parallel execution framework. In the
rest of the subsection, we describe them one by one.

3.1.1. MapReduce process
The MapReduce process is the most common process of the

MapReduce model. First, the map process pre-analyzes input data
and maps these data to different reduce workers, these reduce
workers obtain intermediate data from the master worker and
reduce them using pre-defined algorithms. In our query execution
system, most of the input data of the MapReduce process are the
lists of queries decomposed by the parse engine shown in Fig. 2.
Map workers need to execute these queries first, translate the
query result into collections of 〈Key, Value〉 pairs, and partition
these collections for the upcoming reduce process. Reduceworkers
obtain the input data prepared by the map process and merge
them according to the regulations we specified for our system
(Section 2.2).

3.1.2. Map-only process
Some basic operations (e.g., the update operation) can be

finished in only a single round of the map process. Most of these
operations just update data in member resources and return a
message to indicate whether the operations are successful or
not. This process maps operations to different workers and then
executes them concurrently.
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Fig. 4. Structure of our MapReduce-based Execute Engine.
3.1.3. Reduce-only process
For some complicated operations a single round of the

MapReduce process is not sufficient, in which case a sequence
of reduce processes are required to further process the results
generated by the first round of the MapReduce process. The
sequence of reduce processes following a first round of the
MapReduce process is called the Reduce-only process.

3.1.4. Manage process
In most existing MapReduce systems, the strategy of map

process and reduce process is predefined manually, because it is
hard for these systems to obtain an appropriate schema from the
mass data (e.g. mass data processed by search engines of World
Wide Web). Though one of the important goals of our system is to
deal with mass data, the scale of data we manipulate is far smaller
than the scale of data processed by search engines of the World
Wide Web. Therefore we assign a manage process to make a plan
of each query execution and control the execution of each map
reduce round. The manage process can be considered as the core
of our query execution system. It translates query lists into tasks
which can then be executed. It is also responsible for sending back
the query results to the Parser Engine, which are then returned to
the user.
The responsibility of the manage process is different from the

master worker’s responsibility. The master picks idle workers, as-
signs them tasks,monitors the status of these tasks, and guarantees
the normal operation of the process. Themanage process, however,
defines the strategy of a query execution, decides the number of
map workers and reduce workers and the rounds of MapReduce
processes, generates tasks for each MapReduce round, and sends
them to the master of the round for execution.

3.1.5. Collect process
Results generated by the reduce process are mostly distributed

in different machines and a collector is required to collect and
merge these results together. As compared to a regular reduce
worker of the reduce process, a collectworker of the collect process
needs to translate the results into a format that can be recognized
by other modules of the virtual database systems, and then send
the results with this certain format back to Parser Engine.

3.2. Strategy of our MapReduce-based VDB-MR system

As previously discussed in Section 2, our SQL-based query
language contains fourmain query operations:Map, Select, Join and
Update. TheMap operation has nothing to do with the data, which
only defines the relationships between the virtual table and the
real table from data resources, and is executed in the Parser Engine.
So, in the rest of the section, we discuss the Select, Join and

Update operations one by one.
3.2.1. Select operation
Select operation is the most frequently-used operation in

a virtual database system. When the virtual database system
receives a select query, it decomposes the query into a set of
operations (a set of sub-queries) according to different member
resources, which can then be executed on the member resources,
according to the map regulations of the virtual table pre-specified
by users. Since the select operation only supports a single virtual
table, as discussed in Section 2, the decomposition is not complex.
When the sub-query list is generated it is sent to the query
execution system. The manage process in the query execution
systemdefines the procedure ofmap and reduce processes, decides
thenumber ofmapworkers and reduceworkers, and then executes
the sub-queries. Generally, a select operation canbe finishedby one
round of map and reduce operations. In the rest of the section, we
discuss themain strategies of themap, reduce, manage, and collect
processes when a select operation is executed.
Map: Each map worker needs to complete two tasks. First, a
map worker executes the sub queries sent to it in the related
database and collects the query result which must be a form of
table. Second, the map worker translates the query result into a
collection of 〈Key, Value〉 pairs and partitions the collection for the
reduce workers. Each row of the result table is translated into a
〈Key, Value〉 pair. The key of the pair is a collection of values of
the attributes that have been mapped to the key attributes of the
virtual table. The value of the pair is the data of the corresponding
row.
Reduce: As a traditional reduce process, a reduce worker collects
〈Key, Value〉 pairs with equal keys and forms a collection. The
elements of this collection are merged into a 〈Key, Value〉 pair
by the reduce worker. As the keys of these pairs are equal, this
merge action is actually the merge of rows in different resources
of tables that have same values of key attributes. So the resulted
〈Key, Value〉 pair is translated into a row of the resulting table.
Manage: During the manage process, sub-queries are partitioned
into a number of sub lists according to the number of related
resources. Each of these lists contains sub-queries which need to
execute in the same resource. The number of map workers is the
same as the number of sub lists. The number of reduce workers is
half the number of map workers. When the reduce worker merges
the 〈Key, Value〉 collection, values of different attributes defined
in the virtual table are connected together. If there are several
different values of an attribute, the first value occurring will be
selected.
Collect: The collect process is the last step of a select query. After
reduce workers have finished all the reduce tasks, a collect worker
collects the reduce results from different locations, merges them
together in order, and translates these data into a table.
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An example is provided as follows to illustrate Select operation.
Create vtable vt1(col_a Int, key, col_b String key, col_c int, col_d
int);
Map vtable vt1 into resource1:table1(t1a, t1b, other1,)
And resource2:table2(t2a, t2b, ,other2);

Select * from vt1 where col_a= col_b and col_c= 5;
The sub-query list of this query is given as follows:
Select t1a as col_a, t1b as col_b, other1 as col_c in table1 where
col_a= col_b and col_c= 5;
Select t2a as col_a, t2b as col_b, other2 as col_d in table2 where
col_a= col_b;
In this example, two map workers are requested to execute the

twoqueries in table 1 and table 2 separately. The key of 〈Key, Value〉
pair is {value of col_a, value of col_b}. The merge operation of the
reduce processwillmerge the key pairswith the same key (e.g., the
values of col_a equal the values of col_b).

3.2.2. Join operation
As discussed in Section 2.2.3, our system only supports

equivalent joins; therefore the algorithm of hash join first
introduced in [22] is suitable for the implementation of our join
operation. The MapReduce technology is also based on the hash
algorithm, so it is easy to deal with the join operation defined in
this virtual database system.
The join operation needs two rounds of theMapReduce process.

The first round of the MapReduce process selects the necessary
data from the two related virtual tables separately, assuming
that these data have been prepared and distributed in different
locations. Then the second round of the MapReduce process
starts, with the input of this round being the resulting data of
the first round. Map workers of the second round collect the
〈Key, Value〉 pairs and reform the key of each pair. The new key
of the 〈Key, Value〉 pair is a collection of join attributes in the join
condition, and the value of the pair remains unchanged. An input
〈Key, Value〉 pair can generate several outputs with different keys.
For example, if the join condition is
(t1.a= t2. b and t1.c= t2.d) or (t1. e= t2.f and t1.g= t2.h)
Then the new Key of 〈Key, Value〉 pairs (i.e., the result of t1)

should be decomposed into two pairs:
〈{value of attribute t1.a, value of attribute t1.c}, row value〉 and
〈{valueofattributet1.e, valueofattributet1.g}, rowvalue〉.
Fortunately, every complex condition expression can be

translated into the form of
($expr [and $expr]) [ or ($exp [and $expr])].
So we can use this MapReduce strategy to solve all join

problems.
After the map process, the reduce workers of the second round

merge the 〈Key, Value〉 pairs with same keys. Besides checking
whether the keys are equal or not, the attributes names in the key
also need to be matched as described in the join condition. Then
the collect process collects the result and sends it back to the Parser
Engine, which then returns it to the user.
In our implementation, we start two MapReduce rounds con-

currently to finish the select query of two virtual tables, then a
MapReduce round for the Join operation. The number ofmapwork-
ers for the second MapReduce round is determined by the scale of
data of the first MapReduce round, which is automatically calcu-
lated at the end of the first MapReduce round. Furthermore, the
number of reduce workers is half of the number of map workers.

3.2.3. Update operation
Actually, the update operation includes three operations: insert,

delete and update. They have the same execution process. A map-
only process is enough to execute the update operation. The map
task is similar to that described in Section 3.1.2. A collect process
is also necessary at the end to calculate the number of influenced
rows.
Fig. 5. Virtual table and the resource tables.

4. Experiment and evaluation

A series of experiments has been conducted to evaluate our
VDB-MR system by comparing it with other two systems: OGSA-
DAI [23] and two DBMSs in parallel, with an emphasis on the
performance of the execution engines measured by the execution
time of each system. In the rest of the section, we discuss the
experimental environment in Section 4.1 followed by the design of
the experiments (Section 4.2). The experiment results and analysis
are presented in Section 4.3.

4.1. Experimental environment

The experimental environment is composed of a cluster with
eight nodes, a front-end machine and a user machine. Each of
these computers was running on the Linux 2.4.21-20.EL operating
system. Their principal components are two Intel Itanium 2 IA-64
CPUs with a clock speeds of 1.3 GHz, 4 GBytes of DDR2 RAM, and
two 36.4 GByte SCSI hard drives. We installed VDB-MR in this
cluster, OGSA-DAI in a machine the same as the cluster node, and
Mysql installed in one cluster node acts as the DBMSs in parallel.

4.2. Experiment design

We constructed two tables in two different databases as the
resource tables shown in Fig. 5. The goal of the experiment is to
merge the content of these two tables into one according to the
links shown in shown in Fig. 5.
For the OGSA-DAI database, the process of execution is to query

the content of these two tables in parallel and then join the query
results together. For the two DBMSs in parallel, we need to store
content of these two tables in the DBMSs first, and then join and
return query results. For our VDB-MR system, we first need to
customize the virtual table and the map rule and then execute the
select operation.

4.3. Experiment results and analysis

In this section, we describe the series of experiments we
conducted to compare the execution time of our system with
the other two systems when data size is both below and above
20,000 (large-scale data size). We also compare the performance
difference of our system when large-scale data is executed on a
single multi-core node vs. a set of multiple nodes.

4.3.1. Execution time of data with size under 20,000
The execution time of different data sizes across different

systems is shown in Fig. 6. The abscissa axis is the number of rows
(indicating the size of data) and its maximum is 20,000. The y-axis
is the execution time of different sizes of data. As indicated in the
figure, the execution time of VDB-MR is around 1.5 s and less than
2 s for 20,000 rows of data; while the other two systems require as
much as 60 s (DBMS system) and 70 s (OGSA-DAI).
For more clarity, the execution time of VDB-MR dealing with

data within 20,000 rows is again presented in Fig. 7. The execution
time increases along with the size of data. 20,000 rows of data
are relatively small for our system and the experiment result is
vulnerable to scheduling, the network environment and response
speed of data resources; therefore the experiment results are
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Fig. 6. Execution time of data with size under 20,000 across different systems.

Fig. 7. Execution time of data within 20000 rows of VDB-MR.

Fig. 8. Execution time of large-scale data of VDB-MR.

not strictly monotonically increasing. But in fact, the standard
deviation of the execution time is less than 0.1 s.

4.3.2. Execution time of large-scale data
For more than 20,000 rows of data, the execution time of

OGSA-DAI and the DBMS-based system reached an intolerable
level of execution time: more than 600 s. Furthermore, OGSA-DAI
met problems such as memory overflow because of its implemen-
tation mechanism. Therefore, we only present the experiment re-
sults from our system in Figs. 8 and 9.
From Fig. 8, we can see that the execution time of VDB-MR is

monotonically linearly increasingwith the increase of the data size.
Our system took about 24 s to complete the execution of 1,000,000
Fig. 9. Execution time of unit data of VDB-MR.

Fig. 10. Execution time of large-scale data on amulti-core node vs. multiple nodes.

rows of data. This result demonstrates that VDB-MR is not only
scalable, but also has a very good performance in handling large-
scale data.
The execution time of unit data of VDB-MR is presented in Fig. 9.

The figure indicates that the execution time of unit data is high
when the data size is relatively small, but is basically stable at 0.03 s
when data is more than 20,000 rows. So for larger data size (up to
106 rows of data), VDB-MR has very stable performance.

4.3.3. Execution time of large-scale data on one multicore node and
multiple nodes
We conducted this experiment to compare the execution time

of large-scale data on one multicore node vs. a set of multiple
nodes.
Fig. 10 shows the execution time on one multicore node and a

set of multiple nodes (called multi-node in the rest of the paper).
The efficiency of execution on a single node is slightly higher for a
data size within 500,000 rows; while multi-node performs better
for a data size more than 500,000 rows. This is because different
nodes need to interact through the network IO; while the single
node interacts simply by a simple file operation. When the data
size is less than 500,000 rows, network IO between different nodes
takes relatively more time and is therefore less efficient. However,
the single node performs relatively poorly on parallel processing
when the data size is more than 500,000 rows. But the overall
performances of one multicore node and multi-node are similar,
which demonstrates that our system has a very good performance
on multicore systems.
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5. Related work

Many approaches and systems have been proposed and
developed to achieve data integration [1–9], having the same
or a similar objective: providing flexible and efficient access to
information residing in a collection of distributed, heterogeneous
and overlapping resources such as databases, plain texts, file
systems, distributed file systems, XML files, World Wild Web, and
many other information sources.
Virtual database is a type of data integration technique. Much

research work on virtual databases has been done to address
issues of how a global schema is extracted from autonomous
resources, how an effective query language is identified, and how
decomposing queries are optimized [12,13]. However, research
on query execution has not been given sufficient attention. Our
VDB-MR is an approach to address specifically query execution.
In [2,4,24], DBMS andMMDB are imported to work as the query

executionmodule. They store the query result fromheterogeneous
member resources, and the operations of query, join, merge, and
select of the global virtual database and tables are all done by the
interfaces provided by the DBMS and MMDB. It is very hard for
this system to be tuned to improve query execution performance.
Furthermore, this system is not capable of processing large-scale
data, and querying from remote resources limits the efficiency of
the query execution.
In [14], a query execution plan is generated by decomposing

a query to a virtual database or tables. The plan specifies the
procedure of the query execution. If two intermediate tables need
to be joined together, they need to bemigrated to aworker first and
then executed with the help of a DBMS.With this solution, parallel
execution is possible; some select, join or merge operations can
be done concurrently. However, because the table is the minimum
unit for these operations, if large tables are involved during
the execution of these operations then the execution of these
operations will be the bottleneck of the whole process. Compared
with this architecture, the minimum unit of our query execution
system is a row of a table.
Yale University developed a hybrid system that combines

DBMS and MapReduce technologies, called HadoopDb [19].
HadoopDb is comprised of PostgreSQL on each node, Hadoop as
a communication layer that coordinates the multiple nodes, and
Hive as the translation layer. The system works as a parallel
database,where users can interactwith the systemusing a SQL-like
language. However the system is based on Hadoop and the data
must be stored in the form of key-value; therefore the system
cannot handle heterogeneous data resources.

6. Conclusion

The main concept of data integration is to combine data from
different resources and provide users with a unified view of these
data. Many data-integration solutions have been proposed, and
virtual database is one such solution. A virtual database system is
basically composed of a set of models that specify the structural
characteristics of data sources, views and web services. Many
systems based on these models have been developed to deal
with various real problems of data integration, such as collecting
information from different web sites, integrating spatially-related
environmental data, and aggregating information from multiple
enterprise systems. However, most of these works address the
issues of how a global schema is extracted from autonomous
resources, how an effective query language is identified, and how
decomposing queries are optimized. Query execution has received
little attention.
MapReduce is a software framework introduced by Google

that has well-proven success in Google and Hadoop communities.
MapReduce has been also successfully applied in the database field,
such as Amazon Dynamo and HadoopDb. However, these works
mainly focus on isomorphic data resources stored in the form of
key-value. To the best of our knowledge, no work has been done
to apply MapReduce for data integration of heterogeneous data
resources such as database or file systems. This is the objective of
this work.
In this paper, we propose a new data integration approach

of a virtual database by utilizing the MapReduce technology,
named as VDB-MR. VDB-MR translates a query into sub queries
by the global schema, executes them and merges the results
concurrently using the MapReduce technology. VDB-MR provides
many interfaces and therefore can be very flexibly customized to
accommodate different experiments with different algorithms. A
series of experiments were conducted to evaluate VDB-MR against
an open source data integration system OGSA-DAI and two DBMSs
in parallel. Experiment results show that VDB-MR significantly
outperforms OGSA-DAI and the DBMSs in parallel.
In the future, the emphasis of our research is to optimize the al-

gorithm we used in VDB-MR and further improve the efficiency of
the query execution. We are also looking for an effective fault tol-
erantmechanism in order to improve the robustness of the system.
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