
What is Wrong With the Transmission?
— A Comprehensive Study on Message Passing Related Bugs

Mingxing Zhang Yongwei Wu Kang Chen Weimin Zheng
Tsinghua National Laboratory for Information Science and Technology (TNLIST)

Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China

Technology Innovation Center at Yinzhou,

Yangtze Delta Region Institute of Tsinghua University, Ningbo 315000, Zhejiang, China

Email: zhangmx12@mails.tsinghua.edu.cn {wuyw,chenkang,zwm-dcs}@tsinghua.edu.cn

Abstract—Along with the prevalence of distributed systems,
more and more applications require the ability of reliably trans-
ferring messages across a network. However, passing messages
in a convenient and dependable way is both difficult and error-
prone. Thus the existing messaging products usually suffer from
numerous software bugs. And these bugs are particularly difficult
to be diagnosed or avoided. Therefore, in order to improve the
methods for handling them, we need a better understanding of
their characteristics.

This paper provides the first (to the best of our knowl-
edge) comprehensive characteristic study on message passing
related bugs (MP-bugs). We have carefully examined the pattern,
manifestation, fixing and other characteristics of 349 randomly
selected real world MP-bugs from 3 representative open-source
applications (OpenMPI, ZeroMQ, and ActiveMQ). Surprisingly,
we found that nearly 60% of the non-latent MP-bugs can be
categorised into two simple patterns: the message level bugs and
the connection level bugs, which implies a promising perspective
of detecting/tolerating tools for MP-bugs. Apart from this finding,
our study have also uncovered many new (and sometimes surpris-
ing) insights of the message passing systems’ developing process.
The results should be useful for the design of corresponding bug
detecting, exposing and tolerating tools.

Keywords—network; message passing; bug characteristics

I. INTRODUCTION

A. Motivation

With the increasing complexity of modern software system,
many applications include components that stretch across some
kind of network, either a LAN or the Internet. Thus application
developers often end up doing some message passing routines.
However, different from “merely transferring a few bytes
between two nodes”, “sending messages in a convenient and
dependable way” is much more difficult for several reasons: i)
the portability between different architectures — It is a com-
mon requirement that the messaging layer should be portable
between different architectures (and even different languages).
This leads to an intricate packing/unpacking procedure; ii) the
variousness of communication specifications — In order to
facilitate the users, a reusable messaging layer usually im-
plements various communication specifications, which makes
it large and complex. For example, ZeroMQ [1], a popular
socket library, contains 12 different socket types which can
be connected in 22 ways. And, as pointed out by DeSouza
et al. [2], the MPI standard includes a total of 70 ways to

implement a single point-to-point communication (14 send
calls and five receive calls that can be combined arbitrarily);
iii) the unreliability of network — The underlying network of a
message passing system may be unreliable, which means that
the messaging layer should be able to survive a temporary
network partition or even network unavailable. It needs to
handle lost messages and at the same time eliminates duplicate
messages, whose complexity increases dramatically with the
increasing size of the network; and iv) the dynamic nodes —
The pieces in a network can be sluggish sometime, and even go
away temporarily. Some persistence and fallback mechanisms
are needed to be implemented for providing reliable massage
passing. As a result, the existing messaging products are
suffered from numerous software bugs. Even worse, these mas-
sage passing related bugs (MP-bugs) are difficult to diagnose
or avoid, because specific topology or network condition may
be required to reproduce them. There are even some MP-bugs
that are nondeterministic, which means these bugs depend not
only on inputs and execution environments, but also on thread
interleaving and other timing-related events to manifest.

To address the above challenges, it will require efforts from
multiple related directions, including the bug detecting, expos-
ing, tolerating and fixing techniques. All of these directions
have made some progress over the past years, but still remain
many unsolved issues:

• How can the MP-bugs be properly categorized? A proper
categorization of bugs can provide useful guidelines and
motivations for the future researches. It can be used to
answer many meaningful questions: Is there any pattern
that many MP-bugs share? Is there any type of bugs
that has not been addressed yet by the existing works?
Is a custom method for some specific types of bugs
meaningful? As an illustration, since most of the previous
MP-bug detection researches [3], [4], [5], [6] are focused
on MPI, which are constrained in not only applications but
also communication patterns, a corresponding taxonomy
are needed to answer the question: how important are the
other patterns (e.g. publish-subscribe)?

• What is the result of real world MP-bugs? Apart from
understanding the MP-bugs’ causes, investigating the ef-
fects of MP-bugs is also important for a different set of
reasons. Analyzing the effects can serve as a guide for
further development not only of tools and methodologies
that detect, but also of tools and methods designed to

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.50

411

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.50

410

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.50

410

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.50

410

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.50

410

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.50

410

tolerate and recover from the faults and errors caused
by such bugs. To give a simple example, it is important
to understand how often the MP-bugs cause corrupted
messages, in order to gauge the effectiveness of using a
separate dynamic verification tool and a corresponding
resending system to automatically tolerate them.

• What is the manifestation condition of real world MP-
bugs? The major challenge of software testing is the
exponential input and interleaving space. In order to
achieve a complete testing coverage of the programs, the
testing cases need to cover every possible interleaving
for each input test case, which is infeasible in practice.
To address this challenge, an open question in testing is
as follows: can we selectively test a small portion of the
whole possible space and still expose most of the bugs?
Thus the developing of testing techniques requires a good
understanding of the MP-bugs’ manifestation conditions.
That is, we need to know what conditions are needed
to reliably trigger a MP-bug. For example, how many
brokers, and how many clients are usually involved in a
real world MP-bug’s manifestation?

• What is needed to reproduce a MP-bug? There is a close
correlation between the reproducibility of a bug and the
complexity of analyzing or fixing it. Thus understanding
this question can help design more effective unit test and
tracing technologies.

• How helpful are existing tools in diagnosing and fixing
the real world MP-bugs detected by them? For example,
some MP-bug detection tools can remind the program-
mers that some messages are not received by the corre-
sponding peer. Such information can be very helpful when
using a simple point-to-point communication pattern. But
the communication can be much more complex (e.g., with
multiple brokers or many layers of communication) thus
more detailed information may be required in practice.
More generally, we want to know that what information
is needed while the programmers are fixing a real world
MP-bug.

Answering the above questions will significantly benefit
from a better understanding of the real world MP-bugs. How-
ever, although many empirical studies on general program bug
characteristics (not specific to MP-bugs) have been done in
the past [7], [8], [9], [10], and their findings have provided
useful guidelines for the future researches, few studies have
been conducted on real world MP-bugs. Previously, researchers
have only conducted some preliminary works on the misuses of
MPI [11], [12]. But they are constrained in a specific software,
several simple communication patterns, and with no brokers or
failover abilities.

B. Contributions

This work provides the first (to the best of our knowl-
edge) comprehensive real world MP-bug characteristic study.
Specifically, we examine the bug patterns, bug consequences,
manifestation conditions, fixing complexity and other charac-
teristics of real world MP-bugs. Our study is based on 349
randomly selected real world MP-bugs, collected from 3 large
and mature open-source applications: OpenMPI, ZeroMQ, and
ActiveMQ, which representing different levels of reliabilities.
For each bug, we have examined every piece of information

related to it, including the programmers’ explanations in the
bug report, forum discussions, source code patches, and the
bug-triggering test cases. This information together provides
us a relatively thorough understanding of the bugs.

Our study reveals many interesting findings, which provide
useful guidelines for the future developing of MP-bug detect-
ing, exposing, tolerating and fixing techniques. As an illus-
tration, we found that nearly 60% of the non-latent MP-bugs
(even the semantic bugs) can be categorized into two simple
patterns: the message level bugs and the connection level bugs.
This finding shows that even the semantic bugs in MP-bugs,
which is often caused by application-specific reasons, shares
some common patterns. And it is quite important for the tool
developers who want to automatically detect or tolerate MP-
bugs. We summarize our main findings and their implications
in Table I. They and some more findings are elaborated in the
following sections.

While we believe that the applications and bugs we exam-
ined well represent a large body of MP-bugs, we do not intend
to draw any general conclusions about all message passing
systems. In particular, we should note that all of the character-
istics and findings obtained in this study are associated with the
three examined applications and the programming languages
these applications use. Therefore, the results should be taken
with the specific applications and our evaluation methodology
in mind (see Section II-C for our discussion about threats to
validity).

The remainder of this paper is organized as follows. In
Section II we describe our methodology. Then we present
our findings on MP-bugs’ pattern, manifestation and fixing
in Section III, Section IV and Section V respectively. Other
observations, such as the prevalent multi-layer architecture in
message passing systems, will be briefly discussed in Section
VI. And finally, Section VII discusses related works and
Section VIII concludes.

II. METHODOLOGY

A. Application selection

Three open source applications are used in our study:
OpenMPI, ZeroMQ, and ActiveMQ, in which OpenMPI and
ActiveMQ are the de facto implementation of the MPI [13]
and the AMQP [14] standard respectively and ZeroMQ is a
high-performance asynchronous messaging library aimed at
use in scalable distributed or concurrent applications. They
are all mature and large applications that are popularly used
in industry and possess well-maintained bug report databases.

More importantly, each of them represents a specific level
of reliability: i) in OpenMPI, the library does not handle
dynamic nodes at all (neither reconnect nor resend); ii) in
ZeroMQ, the tool will maintain the connection automatically,
but the messages are not durable1 (reconnect but not resend);
and iii) in ActiveMQ, it intends to provide a fully reliable
message passing layer (both reconnect and resend). These three
applications also have a good coverage on other directions:
with/without broker, various communication patterns, different
programming languages, etc.

1A “durable message” is a message that will be held on by some kind of
reliable broker network if the corresponding receiver is temporarily unavail-
able.

412411411411411411

Findings on Bug Patterns Implications
(1) Semantic bug is the dominant root cause (264 out of
349) of the examined MP-bugs.

More efforts should be put into automatically detecting, exposing
and tolerating semantic bugs.

(2) Nearly 60% (168 out of 289) of the non-latent MP-bugs
are covered by two simple patterns: the message level bugs
and the connection level bugs.

Tools that intend to detect, expose or tolerate message passing
related bugs can focus on these two major bug categories, which
are still very meaningfully.

(3) Only about 20% of the MP-bugs will immediately bring
down or stall the system from making progress.

Proper asynchronous bug tolerating tools can handle a majority
of MP-bugs.

(4) Communication patterns that are not covered by MPI are
also prevalent in MP-bugs

New tools are needed to handle the other communication patterns
related MP-bugs, which are not addressed by the existing works.

Findings on Manifestation Conditions Implications
(5) The manifestation of most (312 out of 340) examined
MP-bugs involves only a few (< 6) nodes.

Most of the MP-bugs can be detected by monitoring a relative
small network, which reduces testing complexity without losing
bug exposing capability much.

(6) Almost all the examined MP-bugs from ActiveMQ
involve no more than 2 brokers.

2 brokers are enough for the testing of many sophisticated
reliability features, such as durable messages, failover broker, etc.

(7) Nearly 40% of the MP-bugs in ActiveMQ are related to
failover, which is far more than the ratio of corresponding
code regions.

MP-bug testing tools could pay more attentions to this kind of
bugs.

Findings on Bug Fixing Implications
(8) About 40% of MP-bugs are not deterministic, which is
much more than the result of previous studies on general
bugs.

Bug diagnosis tools will need to incorporate new techniques (such
as time-stamping inputs or controlling thread scheduling) in order
to reproduce failures due to these bugs via input replaying.

(9) The time needed for fixing a MP-bug is several months
on average.

This fact boosts the need of better bug tolerating techniques.

(10) The patches for MP-bugs are usually small; about 60%
of the patches contain less than 20 lines of code and most
of the patches only affect 1 file.

The hardness of fixing a MP-bug mainly concentrate on diagnos-
ing why it will happen, not the following fixing step.

(11) The first patch of 79 (out of 349) MP-bugs we checked
is buggy or inadequate.

Programmers need help to improve the quality of their patches;
for example, the patch verification tools.

TABLE I: Main findings of this study and their implications.

B. Bug selection

The bug report databases of the selected applications
contain a very large number of bugs. Thus we automatically
filtered bugs that are not likely to be relevant by performing a
search query on the bug report database. We searched the bug
report databases for bugs that contained keywords commonly
associated with MP-bugs, for example, ‘message(s)’, ‘lost’,
‘duplicate’, ‘(un)pack’, ‘order’, etc. In addition to this we only
searched for bugs whose status was closed, fixed, or resolved
(i.e., bugs that are no longer under analysis by the developers),
because the other bug reports that are marked as unclosed (or
incomplete, etc.) are not likely to have enough information for
our study. From the thousands of bug reports that contain at
least one keyword from the above keyword set, we randomly
sampled a subset (about 200) of the bugs for each application
and manually analyzed them.

�������Phase
App.

OpenMPI ZeroMQ ActiveMQ

Total closed bugs 955 204 2,165
Analyzed bugs 81 109 159

TABLE II: Bug counts of different applications.

The manual inspection revealed that some of the bugs that
matched the search query are not message passing related
and so we also excluded them. In addition, we also excluded
bugs for which the corresponding bug report does not con-
tain enough information to analyze them. After filtering, we

obtained a final set of 349 analyzed MP-bugs, a number that
is close (or even superior) to the number of bugs analyzed in
many previous studies on other kinds of bugs [9], [15], [16].
Table II shows the bug counts of different applications.

C. Limitations

Our methodology’s limitations should be considered when
using or interpreting our results. Like other empirical studies,
our results are limited by the kinds of applications and software
bugs we used. While we believe that the applications and bugs
we examined well represent a large body of MP-bugs, we
do not intend to draw any general conclusions about all the
massage passing systems. In particular, we should note that
all of the characteristics and findings obtained in this study
are associated with the three examined applications and the
programming languages these applications use. Therefore, the
results should be taken with the specific applications and our
evaluation methodology in mind.

Moreover, we focus on the bugs that are found in the
implementation of messaging systems temselves. Thus our
study may not reflect the characteristics of other types of bugs,
such as the misuse of massage passing systems.

In terms of our examination methodology, we manually
analyzed the bug reports of the sampled MP-bugs. We have
examined every piece of information related to each examined
bug, including programmers’ explanations, forum discussions,
source code patches, and the bug-triggering test cases. In

413412412412412412

Dimension Category Description

Root
Cause

memory Bugs caused by improper handling of memory objects.
concurrency Bugs that only happen in multi-threading (or multi-processes) environment.
semantic Inconsistent with the original design requirements or the programmers’ intention.

Impact

message-level Bugs that impact the delivering of one or several messages.
connection-level Bugs that are related to the connection between two nodes.
node-level Bugs that result in the termination of the complete system or some components of the system or causes extensive

corruption of the data.
latent Bugs that will not affect the system’s correctness immediately.

Communication
Pattern

send-receive Delivering messages between two pairs.
collective Communication that involves all the processes in a logical group of nodes.
produce-consume Each produced message will be consumed by one and only one consumer.
publish-subscribe All the messages published by the publishers will be received by all the subscribers.
general Bugs that do not specific to one communication pattern (e.g., bugs that related all kinds of connections).

TABLE III: Categories of the three dimensions. Some categories and definitions are borrowed from BugBench [17].

addition, we are also familiar with the examined applications,
since we have used them in many of our previous projects.

III. BUG PATTERN STUDY

To build a more reliable massage passing system, it is im-
portant to understand the type of bugs that are most prevalent
and the typical patterns across MP-bugs. Since different types
of bugs require different approaches to detect and tolerate,
these fine-grained bug patterns provide useful information to
developers and tool builders alike.

In order to provide guidelines for future research on MP-
bugs, in this section, we focus on three particular dimensions:
Root Cause, Impact and Communication Pattern. Specifi-
cally, i) along the cause dimension, we classify the MP-bugs
into three disjoint categories based on their root causes; ii) for
the impact dimension, we analyzed the MP-bugs with respect
to their consequences that are exposed to the users, and divided
these impacts into four categories and 13 sub-categories; and
iii) when it comes to the communication patterns, we have
totally observed five different modes. All the related definitions
are given in Table III and Table IV.

A. Partition by root causes

We first present the analysis results based on the bugs’ root
causes. As mentioned before, we classify the MP-bugs into
three disjoint categories: memory, concurrency, and semantic.
Figure 1, which shows the total number of each type of bugs
across different applications, summarizes our investigation
results.

Finding (1): Semantic bug is the dominant root cause
(264 out of 349) of the examined MP-bugs.

Implication: More efforts should be put into automati-
cally detecting, exposing and tolerating semantic bugs.

From the figure, we can observe that semantic bug is
the dominant root cause of MP-bugs. It counts to 67% -
84% of the examined MP-bugs. One possible reason of this
fact is that most semantic bugs are application specific. A
programmer can easily introduce semantic bugs due to a lack
of thorough understanding of the system, its requirements or its
specifications. Thus it is much harder to automatically detect
them. In contrast, the causes of memory and concurrency
bugs are general for any applications, which means that the

OpenMPI ZeroMQ AvtiveMQ

0

50

100

14 11
22

13
6

19

54

92

118

N
u

m
b

er
o

f
b
u

g
s

Memory Concurrency Semantic

Fig. 1: Distribution of root causes.

developers can use general tools for exposing them. As an
illustration, Valgrind [18] is a popular instrumentation frame-
work for building dynamic analysis tools. There are many
mature Valgrind tools [19], [20] that can automatically detect a
lot of memory management and concurrency bugs. Moreover,
there also exist techniques [21], [22], [23] that intend to
tolerate these bugs on-the-fly in the production runs. They can
help the system to avoid failures, even when the bug is already
triggered.

Although the result is a little bit lower than the 81.1% -
86.7% reported in a previous general bug characteristics study
[24] (bugs excluding memory bugs and concurrency bugs); it
is still very significant. Therefore, there is no doubt that more
efforts should be put into automatically detecting, exposing
and tolerating semantic bugs.

B. Partition by impacts

As we have discussed above, a large portion of MP-bugs
are caused by application specific reasons, which hinders the
mining of programmers’ intensions. As a result, it is hard
to automatically detect or tolerate these bugs. However, for
the message passing related bugs there exist two kinds of

414413413413413413

Category Sub-category Description Abbr.

Message
Level
Bugs

Corrupted message The message received is not the same as the sent message. Cor.
Duplicate message The message is received twice or more. Dup.
Lost message One or more messages are deemed delivered but not received by the corresponding receivers (i.e., the

sending procedure is accomplished successfully, but the messages are lost).
Los

Unclaimed message Received unsent message. Unc.

Connection
Level
Bugs

Failed topology maintaining The message passing system fails to discover/remove (i.e., setup/close a connection with) an
active/closed node, or a newly added node fails to add itself to the network.

Top.

Failed automatic reconnection The reconnection procedure caused by temporary network partition or node restarting is failed. Rec.
Out of order The user assumes a specific order of message with the connection, but this intension is not guaranteed. Ord.

Node
Level
Bugs

Crash Several nodes or the whole system become unusable Crash
Error Operation failure or unexpected error code returned. Error
Hang One or more nodes of the message passing system become making no progress (e.g., infinite loop,

deadlock, live lock).
Hang

Latent
Bugs

Leak Some resources are not freed after usage (e.g., memory leak, file descriptor leak). Leak
Performance loss The execution take more resources (e.g., time, CPU, bandwidth) than expected. Per.
Uncategorized latent bug The other consequence, such as incorrect statistic information. Unl.

TABLE IV: Bug Consequence Classification. This table shows the definitions of various MP-bug consequences.

intentions that are both important and prevalent: the message
related intensions and the connection related intensions.

Message related intensions: the user of a message passing
system usually wants his/her message to be intactly sent to
the correct receiver once and only once, but this intention
may not be guaranteed. The message can be lost because
of the unreliability of the network or software errors, at the
same time the corresponding resending procedure may cause
duplicate messages. And it is also possible that the message
is corrupted during the packing/unpacking procedure or some
receivers received a message that is not sent by any sender.

Connection related intensions: In order to deliver mes-
sages, the message passing system needs to maintain the
topology of all the active nodes (senders, brokers, receivers,
etc.), which is difficult since the network is unreliable and
the nodes may be dynamically added/removed. As a result,
there are many bugs related to this connection maintaining
procedure, such as unable to reconnect two nodes or fail to
discover a newly added node.

It will be very helpful to gauge the portion taken by these
two kinds of intentions among MP-bugs. In order to answer
this question, we study the impacts of MP-bugs, and categorize
them following the definitions listed in Table IV. Among the
four categories, the Message Level Bugs and the Connection
Level Bugs correspond to the aforementioned message related
intensions and connection related intensions respectively. In
the other two categories, the Latent Bugs are less important,
since i) mature tools [25] can be used to detect memory
leakages, which is the dominate part of Leak; ii) Performance
loss is not that serious since it does not impact the system’s
correctness; and iii) the remaining uncategorized latent bugs
are usually incorrect statistic information, which is not harmful
if not used. That is, only the Node Level Bugs’ corresponding
intensions remain unclear.

Table V presents the statistic results. Note that the sum
of all occurrences is larger than the total number of bugs
because some bugs fit into more than one category.

�������Type
App.

OpenMPI ZeroMQ ActiveMQ

Message
Level
Bugs

Cor.

27

23

26

12

45

13
Dup. 1 0 7
Los. 1 12 23
Unc. 2 2 2

Connection
Level
Bugs

Top.
6

6
25

15
39

21
Rec. 0 10 16
Ord. 0 0 2

Node
Level
Bugs

Crash
39

20
45

22
37

10
Error 9 15 9
Hang 10 8 18

Latent
Bugs

Leak
11

3
14

6
40

14
Per. 5 6 20
Unl. 3 2 6

TABLE V: Consequence of MP-bugs.

Finding (2): Nearly 60% (168 out of 289) of the non-
latent MP-bugs are covered by two simple patterns:
message level bugs and connection level bugs.

Implication: Tools that intend to detect, expose or toler-
ate message passing related bugs can focus on these two
major bug categories, which are still very meaningfully.

Apart from the latent bugs that will not lead to a failure
immediately (and even not harmful in sometimes), nearly 60%
of the remaining MP-bugs are message/connection related.
This is also true for semantic bugs, 143 out of 220 non-
latent semantic bugs belong to these two categories. As we
have mentioned before, these bugs are much easier to be
automatically detected than the general semantic bugs, because
the programmers’ corresponding intensions are more apparent.
According to our investigation, we have summarized a total
of seven different popular intentions, which correspond to the
seven sub-categories under the Message Level Bugs and the
Connection Level Bugs. And we think specific tools can be
built to detect or tolerate each of them.

For example, FlowChecker [26] is a low-overhead method
for detecting MP-bugs in MPI libraries. It instruments the
binary code of both MPI applications and MPI libraries which
logs MPI function calls (e.g., MPI Send and MPI Recv) at
the application level and data movement operations at the
library level into trace files. Then, by investigating the MPI
calls in the trace files, FlowChecker tracks the correspond-
ing message flows by following the relevant data movement

415414414414414414

operations starting from the sending buffers. If the message
data are not correctly delivered to the receiving buffers as
indicated by the MPI calls, FlowChecker reports the bug and
provides diagnostic information, such as faulty MPI functions
or incorrect data movements, to help pinpoint the root causes.
To put it simply, FlowChecker can be used to detect all the
four sub-categories of message level bugs in MPI. And we can
easily anticipate that similar method can be used for the other
applications (apart from MPI).

As for the connection level bugs, a standby ping/pong
system can be used as a reference for the verification (just
like the checksum technique used in detecting message level
bugs). Increasing the system’s reliability by implementing
multiple functionally equivalent programs, which is based on
the classic idea of N-version programming [27], has already
been successfully used in many other fields. As an illustration,
EnvyFS [28] implements a thin VFS-like layer near the top
of several replicates file-system (e.g., ext3, ReiserFS, JFS)
and uses majority-consensus to operate correctly despite the
sometimes faulty behavior of an underlying commodity child
file system. However, we do not (as far as we know) find a
mature tool that can handle connection level bugs, although
they account for a great portion when reliability is needed.

Finding (3): Only about 20% of the MP-bugs will im-
mediately bring down or stall the system from making
progress.

Implication: Proper asynchronous bug tolerating tools
can handle a majority of MP-bugs.

Among all the 13 sub-categories of the MP-bugs, only
Crash and Hang will immediately bring down or stall the
system from making progress. This give space to asynchronous
bug tolerating tools. That is, the user can run the message pass-
ing system in tandem with a dynamic verification tool (e.g.,
FlowChecker, standby ping/pong system). Once observing a
bug’s happening, another remedial system can try to do some
recovery (e.g., resending, reconnecting, restarting). At least it
can explicitly signal the message passing system, and hope it
will be handled by the client application appropriately.

C. Partition by communication patterns

Finally, we study the distribution of communication pat-
terns among MP-bugs.

Finding (4): Communication patterns that are not cov-
ered by MPI are also prevalent in MP-bugs.

Implication: New tools are needed to handle the other
communication patterns related MP-bugs, which are not
addressed by the existing works.

As we have mentioned before, as fast as we know, most
of the previous MP-bug detection researches [2], [?], [5] are
focused on MPI, which are constrained in not only applica-
tions but also communication patterns. However, the result
shows that other patterns are also important. Moreover, these
uncovered patterns (i.e., produce-consume, publish-subscribe)
can not be converted to point-to-point communication easily;
because more information, such as the current network’s
topology, is needed to verify their correctness. That is, although

OpenMPI ZeroMQ ActiveMQ

Send-Receive

Collective

General

Publish-Subscribe

Produce-Consume

29%

29%

42%

61% 23%

16%
33%

32%

35%

Fig. 2: Distribution of communication patterns.

important and prevalent, these other patterns have not been
well studied by previous researches. Thus many bugs will be
missed by the existing MP-bug detectors, which mainly focus
on send-receive bugs or collective bugs that can be observed
in MPI.

IV. BUG MANIFESTATION STUDY

The manifestation condition of an MP-bug is usually a
specific order among a set of message or system events. In
this section, we study the characteristics of real world MP-
bug’s manifestation. We will discuss the learned guidelines
for MP-bug testing and detecting based on our observations.

A. How many nodes are involved?

Finding (5): The manifestation of most (312 out of 340)
examined MP-bugs involves only a few (less than 6)
nodes.

Implication: Most of the MP-bugs can be detected by
monitoring a relative small network, which reduces test-
ing complexity without losing bug exposing capability
much.

Finding (5) tells us that even though the examined message
passing systems usually deployed in a large network (hundreds
of nodes), in most cases, only a small number (less than 6) of
nodes are involved in the manifestation of a MP-bug.

The underlying reason for this is that most messages do not
closely interact with many nodes, and most communication and
collaboration is conducted between small group of nodes. As
a result, the manifestation conditions of most MP-bugs do not
involve many nodes. Moreover, 234 out of the 340 successfully
analyzed MP-bugs can be manifested in the simplest network
topology (2 for MPI/ZeroMQ, 3 for ActiveMQ).

We should note that this finding is not opposite to the
common observation that MP-bugs are sometimes easier to
manifest at a heavy-workload or in a large network. The heavy-
workload will increase the resource competition and context

416415415415415415

Application ≥ 6 nodes 5 nodes 4 nodes ≤ 3 nodes

OpenMPI 9 0 8 55

ZeroMQ 5 0 5 99

ActiveMQ 14 7 38 100

TABLE VI: The number of nodes involved in MP-bugs. Some

bugs are omitted if not enough information is given.

switch intensity. It therefore increases the possibility of hitting
certain orders that can trigger the bug. The manifestation
condition still involves just a few nodes.

Finding (6): Almost all the examined MP-bugs from
ActiveMQ involve no more than 2 brokers.

Implication: 2 brokers are enough for the testing of
many sophisticated reliability features, such as durable
messages, failover broker, etc.

We further study the number of brokers involved in the
MP-bugs from ActiveMQ. The results are given in Figure 3. It
shows that almost all the examined MP-bugs from ActiveMQ
involve no more than 2 brokers, which means that 2 brokers
are enough for the testing of many sophisticated reliability
features, such as durable messages, failover broker, etc.

1
B
ro

ke
r

2
B
ro

ke
rs

3
B
ro

ke
rs

>
3

B
ro

ke
rs

0

50

100

115

36

3 5

N
u

m
b

er
o

f
B

u
g

s

Fig. 3: The number of brokers involved in MP-bugs from
ActiveMQ.

Overall, our finding implies that the testing of MP-bugs can
focus on small networks. Such testing technique can prevent
the testing complexity from increasing exponentially with the
number of nodes. At the meantime, few MP-bugs would be
missed. Such implication is a necessary condition of practical
model checking for message passing systems.

B. How many MP-bugs are related to failover?

How hard is the achieving of reliable message passing?
To answer this question, we examine the number of bugs that

OpenMPI ZeroMQ ActiveMQ

3 14 59
(4%) (13%) (37%)

(a) By Application.

Memory Concurrency Semantic

7 11 58
(15%) (29%) (22%)

(b) By Root Cause.

Message-level Connection-level Node-level Latent

12 34 20 10
(12%) (49%) (17%) (15%)

(c) By Impact.

TABLE VII: Failover Related Bugs. This table shows the number and

percentage of the bugs related to failover in MP-bugs.

Application Deterministic Input Timing Dependent Non-deterministic

OpenMPI 57 1 23

ZeroMQ 77 12 20

ActiveMQ 88 28 43

TABLE VIII: Symptom Reproducibility Characteristics.

are related to the failover procedure (e.g., reconnecting to a
restarted node). According to our investigation, many bugs
we found arose not in common-case code paths but rather in
the more unusual failover-handling cases. This type of bugs
is critical for the messaging layer’s robustness, since they
usually hinder the fulfillment of programmers’ intention on
reliabilities. In the rest of this section, we will quantify bug
occurrences on failover-handling paths; Tables VII (a), (b) and
(c) present our investigation results.

Finding (7): Nearly 40% of the MP-bugs in ActiveMQ
are related to failover, which is far more than the ratio
of corresponding code regions.

Implication: MP-bug testing tools could pay more atten-
tions to this kind of bugs.

As we can see from the first table, only a few bugs are
related to failover in OpenMPI, since it only provides a less-
used checkpoint system. But the importance of failover-related
bugs increases with the increasing requirements of reliability;
at last, nearly 40% of the MP-bugs in ActiveMQ are related
to failover, which is far more than the ratio of corresponding
code regions.

When broken down by bug type and impact in the second
and third table, we can see that roughly 20% of semantic
bugs occur on the failover paths and in node level bugs.
We think this can be another breakthrough for inferring the
programmers’ intentions of semantic bugs.

V. BUG FIXING STUDY

A. Bug reproducibility

Reproducing bug symptoms is a prerequisite for perform-
ing automatic bug diagnosis. In this section we subclass the

417416416416416416

MP-bugs by their reproducibility. That is, can the bug be
reproduced on demand? And do bugs have characteristics that
ease or hinder automatic bug diagnosis? Table VIII summarizes
our results; the bugs are classified as either deterministic, input
timing dependent, or non-deterministic.

A failure due to a software bug is observed to be deter-
ministic if the fault triggers the same symptom each time the
application is run with the same set of input requests in the
same order, on a fixed architecture/OS platform and a fixed
server configuration. Otherwise, the bug is non-deterministic.
We also single out a special case of non-deterministic software
bugs named input timing dependent. A bug is deemed as input
timing dependent if the timing of the input requests in addition
to their order determines whether a symptom is triggered and
if so which symptom. In contrast, if the occurrence of the
symptom depends upon timing issues that are beyond the
client’s control (e.g., the thread scheduling for concurrency
bugs); we still classify such failures as non-deterministic, not
as input timing dependent.

Note that our study is conservative with respect to the
definition of non-determinism. More specifically, we classify
a bug as non-deterministic if, according to the bug report,
the symptom(s) could not be reproduced consistently for any
reason (e.g., the same inputs may not be available or parts
of the environment might have changed). It is possible that
such bugs are deterministic, but we conservatively assume
that they are not. Also, our definition of determinism is
overly restrictive. We believe that many of the deterministic
bugs in our study are actually deterministic across different
environments and configurations as, in many cases, failures are
reproduced by developers on different systems from the one
where the bugs are first detected. But because bug reports often
lack sufficient information about the bug’s behavior across
different environments, we chose to define deterministic to
mean reproducibility in a fixed environment. In some bug re-
ports, the failure could not be reproduced or was very difficult
to reproduce (as it occurred infrequently). We conservatively
classified such bugs as non-deterministic.

Finding (8): About 40% of MP-bugs are not determin-
istic, which is much more than the result of previous
studies on general bugs.

Implication: Bug diagnosis tools will need to incorpo-
rate new techniques (such as time-stamping inputs or
controlling thread scheduling) in order to reproduce
failures due to these bugs via input replaying.

These properties are useful, as it will determine whether the
diagnosis tools can reliably reproduce the failure symptoms.
And fortunately, the results show that about 60% of the bugs
demonstrate deterministic behavior, which means they can be
reproduced by given the same set of input requests in the same
order.

However the remaining 40% of MP-bugs, which are not
deterministic, are also non-ignorable. This result is much more
than previous Sahoo’s results (17%) on general bugs [9]. One
possible reason is that many MP-bugs are related to networks
and multiple nodes, which are much complex. Additionally,
the existing bug detection tools can effectively reduce the
diagnosis and resolution time of deterministic bugs.

As a result, since the majority of MP-bugs are determinis-
tic, bug diagnosis tools should be able to reproduce them by
replaying inputs. But there still exist a large body of MP-bugs
that are non-deterministic. Thus bug diagnosis tools will need
to incorporate new techniques (such as time-stamping inputs
or controlling thread scheduling) in order to reproduce failures
due to these bugs via input replaying.

B. Bug fixing complexity

Finally, we compared MP-bugs from different categories
with respect to their complexity of fixing them, according
to the bug report fields that specify these properties. For
measuring the complexity of fixing bugs we used three metrics
that can be extracted from the bug reports: time to fix the
bug, number of files involved in the patches, and line of
code changed. Although none of these metrics is perfect, in
combination they help us estimate the complexity of fixing
these bugs.

Category Time File LoC

Memory 102/17 3/1 115/8

Concurrency 207/59 4/2 70/22

Semantic 140/20 2/1 68/14

Total 142/21 2/1 75/15

TABLE IX: Complexity of fixing MP-bugs. For each class of bugs

we present the average/median for each of the three metrics: time to fix the bug in days,

number of files in the patches and line of code changed.

We present a comparison of the three complexity metrics
in Table IX. Since some of these fields contain significant
outliers, in addition to presenting the average for all three
metrics we also present the median.

Finding (9): The time needed for fixing a MP-bug is
several months on average.

Implication: This fact boosts the need of better bug
tolerating techniques.

Our analysis of the fixing complexity revealed that the bug
fixing is hard in term of consumed time. It usually takes several
months on average to fix a bug. This fact boost the requirement
of bug tolerating techniques, since even the bug is detected
the user still need to wait an appreciable period of time before
using a correct version of code. And the techniques that can
automatically generate a temporary patch (just like Loom [29]
for concurrency bugs) are also useful.

Finding (10): The patches for MP-bugs are usually
small; about 60% of the patches contain less than 20
lines of code and most of the patches only affect 1 file.

Implication: The hardness of fixing a MP-bug mainly
concentrate on diagnosing why it will happen, not the
following fixing step.

However, the bugs’ fixing complexity is not that apparent
in terms of patch size. As we can see from the table, most
of the patches are small. And, according to our investigation,
about 60% of the patches contain less than 20 lines of code
and most of the patches only affect 1 file. We can infer from

418417417417417417

this fact that the hardness of fixing a bug is concentrate in
diagnosing why it will happen, not the following fixing step.

C. Mistakes during bug fixing

Another indicator for the hardness of fixing a MP-bug is
that many patches released by programmers are still buggy.
In order to investigate the nature of buggy patches, we count
the number of patches applied to each bug, and the relation
between bugs.

Finding (11): The first patch of 79 (out of 349) MP-bugs
we checked is buggy or inadequate.

Implication: Programmers need help to improve the
quality of their patches; for example, the patch verifi-
cation tools.

Our study finds that the first patch of 79 (out of 349) MP-
bugs we checked is buggy or inadequate; 32 of these bugs
are explicitly reopened by the developers, which means that
the programmers once incorrectly determine the bug to be
fixed after their testing. Among these distinct buggy patches,
some of them only decrease the occurrence probability of the
original MP-bugs, but fail to fix the bug completely. And, more
important, 19 of them introduce new bugs. This shows that
programmers need help to improve the quality of their patches;
for example, the patch verification tools.

VI. OTHER CHARACTERISTICS

Many bugs rely on specific system architecture: In our
study, we find many bugs are relied on one specific system
architecture or even the cooperation of machines with several
specific architectures. The majority of these bugs are related to
the packing/unpacking procedure of the messages. But some of
them are much trickier. For example, bug OpenMPI#213 is
caused by the different alignment strategy of different architec-
tures. Specifically, the reporter consistently got a segmentation
fault caused by SIGBUS when running the following line:

hdr− > hdr match.hdr ctx =

sendreq− > req send.req base

.req comm− > c contextid;

After investigation, the developer finds that the hdr field
may be oddly aligned in SPARC, which caused the code to
fire a SIGBUS because hdr ctx requires a 2 byte alignment.
Thus the programmers fix the bug by manually padding the
variable.

Bug severity: Bug severity is about the risk a bug poses if it
gets out into the wild. Usually the severity of a bug can belong
to the following types [30]: i) Critical: The failed function
is unusable and there is no acceptable alternative method to
achieve the required results. ii) Major: The failed function
is unusable but there exists an acceptable alternative method
to achieve the required results. iii) Minor: The defect does
not result in termination, but causes the system to produce
incorrect, incomplete or inconsistent results. iv) Trivial: The
defect does not result in termination, does not damage the
usability of the system and the desired results can be easily

obtained by working around the defects. We study the MP-
bugs with respect to their severity, according to the bug report
fields that specify these properties. We found that only 70 out
of 349 MP-bugs are labeled as critical, which means that an
acceptable alternative method can be found for most of the
bugs. It raises the possibility of implementing bug tolerating
tools.

Some MP-bugs cross many layers: Nowadays, the software
become more and more complex. Some times the path of a
message-sending request will traverse many layers. And the
request also appears differently at each layer. For example, a
message-sending request in JBossMQ will incur a correspond-
ing message sending in the underlining ActiveMQ. This, in
turn, results in Ethernet packets across the network, and finally
leads to another message-receiving request at the correspond-
ing peer. We also find bugs that cross many layers within one
software. As an illustration, a message in ZeroMQ can be split
into many sub-messages, and each sub-message is transmitted
independently. Thus the sending of the whole message and
the sending of each sub-message can be determined as two
layers. This prevalent layering increases the hardness of bug
diagnosis. Tools that can automatically pin-point to the right
layer will be very helpful.

VII. RELATED WORK

Bug characteristic studies Given the importance of software
reliability and the prevalence of bugs, many studies on bug
characteristics have previously been done. These works have
studied many aspects of various kinds of bugs, including
their patterns, impacts, reproducibility, and fixes [15], [7],
[8]. And many of them provide precious information to help
improve software reliability from different aspects, such as
bug detecting, fault tolerance, failure recovery, and testing,
etc [16], [9].
But unfortunately, few studies have been conducted on real
world MP-bug characteristics. Previously, researchers have
conducted some preliminary works on the misuses of MPI
[11], [12]. But they are constrained in a specific software,
several simple communication patterns, and with no brokers
or failover abilities. In contrast, our work provides a much
more comprehensive study on general MP-bugs.

MPI bug detection The Message Passing Interface library is
one of the most popular message passing layer in practice,
and is being actively developed and supported through several
implementations designed to run on a plethora of architectural
platforms. Thus many conventional debugging tools have
been designed for MPI programs, such as the Intel Message
Checker [2]. There also exist works for detecting the bugs in
the developing of MPI libraries. For example, FlowChecker
[26] can extract program intentions of message passing, and
to check whether these intentions are fulfilled correctly by the
underlying MPI libraries, i.e., whether messages are delivered
correctly from specified sources to specified destinations. If
not, it reports the bugs and provides diagnostic information.
Another line of tools such as ScalaTrace [31] and MPIWiz
[32] record MPI calls into a trace file and use this information
to deterministically replay the program. Our work is comple-
mentary to these works, since it has the potential to guide
and motivate the development of these kinds of techniques
and approaches.

419418418418418418

Verification solutions for message passing systems In ad-
dition to the aforementioned testing approaches, researchers
have also explored formal verification and model checking
methods for detecting bugs in the message passing systems.
Spin [33], a tool for analyzing the logical consistency of
concurrent systems, provides built-in support for a number
of message passing features. It has been used to verify
message passing systems by many researchers [3], [4]. Some
recent works [5], [6] take an approach that integrates the
best features of testing tools (ability to run directly on user
applications) and model checking (coverage guarantees) to
verify MPI applications. They run the MPI program under
the control of a verification scheduler, guarantee to detect all
potential matches for non-deterministic (wildcard) receives,
and explore each of these matches in different runs of
the program. Thus, they exhaustively explore and ensure
full coverage of non-determinism. Our study on MP-bug
manifestation conditions provides guidelines for the future
researches of this field, which can help understand the trade-
off between testing complexity and bug exposing capability
and help design better coverage criteria.

VIII. CONCLUSION AND FUTURE WORK

This paper provides a comprehensive study of the massage
passing related bugs. We examined their pattern, manifestation,
fixing and other characteristics. Our study is based on 349
real world MP-bugs, randomly collected from 3 representative
opensource programs: OpenMPI, ZeroMQ, and ActiveMQ.
The result of our study includes many interesting findings
and implications, which can benefit future researches on MP-
bug detecting, exposing and tolerating in various aspects. For
example, future work can design new bug detection tools to
address the message level bugs and the connection level bugs;
can focus on testing relative small networks, etc. In particular,
we intend to develop tools that can automatically tolerate MP-
bugs.

IX. ACKNOWLEDGMENTS

This Work is supported by National High-Tech R&D
(863) Program of China (2012AA012600), Natural Sci-
ence Foundation of China (61433008, 61373145, 61170210,
U1435216), Chinese Special Project of Science and Technol-
ogy (2013zx01039-002-002).

REFERENCES

[1] “http://zeromq.org/.”

[2] J. DeSouza, B. Kuhn, B. R. de Supinski, V. Samofalov, S. Zheltov, and
S. Bratanov, “Automated, scalable debugging of MPI programs with
intel® message checker,” ser. SE-HPCS ’05.

[3] O. S. Matlin, E. L. Lusk, and W. McCune, “SPINning parallel
systems software,” in Proceedings of the 9th International SPIN
Workshop on Model Checking of Software. London, UK, UK:
Springer-Verlag, 2002, pp. 213–220. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=645881.672236

[4] S. Siegel and G. Avrunin, “Verification of MPI-based software for
scientific computation,” in Model Checking Software, ser. Lecture
Notes in Computer Science, S. Graf and L. Mounier, Eds. Springer
Berlin Heidelberg, 2004, vol. 2989, pp. 286–303. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-24732-6 20

[5] S. Vakkalanka, G. Gopalakrishnan, and R. M. Kirby, “Dynamic verifi-
cation of MPI programs with reductions in presence of split operations
and relaxed orderings,” ser. CAV ’08.

[6] A. Vo, S. Vakkalanka, M. DeLisi, G. Gopalakrishnan, R. M. Kirby, and
R. Thakur, “Formal verification of practical MPI programs,” ser. PPoPP
’09.

[7] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An empirical
study of operating systems errors,” ser. SOSP ’01.

[8] L. Lu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and S. Lu, “A
study of linux file system evolution,” Trans. Storage, vol. 10, no. 1, pp.
3:1–3:32, Jan. 2014. [Online]. Available: http://doi.acm.org/10.1145/
2560012

[9] S. K. Sahoo, J. Criswell, and V. Adve, “An empirical study of reported
bugs in server software with implications for automated bug diagnosis,”
ser. ICSE ’10.

[10] T. Zimmermann, N. Nagappan, P. Guo, and B. Murphy, “Characterizing
and predicting which bugs get reopened,” ser. ICSE ’12.

[11] S. Sharma and G. Gopalakrishnan, “Efficient verification solutions for
message passing systems,” in IPDPS Workshops, 2011, pp. 2026–2029.

[12] S. F. Siegel and G. S. Avrunin, “Verification of MPI-based software for
scientific computation,” ser. SPIN ’04.

[13] “http://www.mpi-forum.org/docs/docs.html.”

[14] “http://www.amqp.org/.”

[15] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: A
comprehensive study on real world concurrency bug characteristics,”
ser. ASPLOS ’08.

[16] P. Fonseca, C. Li, V. Singhal, and R. Rodrigues, “A study of the internal
and external effects of concurrency bugs,” in DSN’10, 2010, pp. 221–
230.

[17] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou, “Bugbench:
Benchmarks for evaluating bug detection tools,” in In Workshop on
the Evaluation of Software Defect Detection Tools, 2005.

[18] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight
dynamic binary instrumentation,” ser. PLDI ’07.

[19] K. Serebryany and T. Iskhodzhanov, “Threadsanitizer: Data race detec-
tion in practice,” ser. WBIA ’09.

[20] N. Nethercote and J. Seward, “How to shadow every byte of memory
used by a program,” ser. VEE ’07.

[21] M. Zhang, Y. Wu, S. Lu, S. Qi, J. Ren, and W. Zheng, “Ai: A lightweight
system for tolerating concurrency bugs,” ser. FSE 2014.

[22] J. Yu and S. Narayanasamy, “Tolerating concurrency bugs using trans-
actions as lifeguards,” ser. MICRO ’43.

[23] J. Yu and S. Narayanasamy, “A case for an interleaving constrained
shared-memory multi-processor,” ser. ISCA ’09.

[24] M. Sullivan and R. Chillarege, “A comparison of software defects
in database management systems and operating systems,” in Fault-
Tolerant Computing, 1992. FTCS-22. Digest of Papers., Twenty-Second
International Symposium on, 1992, pp. 475–484.

[25] M. Hauswirth and T. M. Chilimbi, “Low-overhead memory leak detec-
tion using adaptive statistical profiling,” ser. ASPLOS ’04.

[26] Z. Chen, Q. Gao, W. Zhang, and F. Qin, “Flowchecker: Detecting bugs
in MPI libraries via message flow checking,” ser. SC ’10.

[27] A. Avizienis, “The methodology of n-version programming,” Software
fault tolerance, vol. 3, pp. 23–46, 1995.

[28] L. N. Bairavasundaram, S. Sundararaman, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau, “Tolerating file-system mistakes with EnvyFS,”
ser. USENIX ’09.

[29] J. Wu, H. Cui, and J. Yang, “Bypassing races in live applications with
execution filters,” ser. OSDI ’10, 2010, pp. 1–13.

[30] “ISTQB Exam Certification. http://istqbexamcertification.com/.”

[31] M. Noeth, P. Ratn, F. Mueller, M. Schulz, and B. R. de Supinski,
“Scalatrace: Scalable compression and replay of communication
traces for high-performance computing,” J. Parallel Distrib. Comput.,
vol. 69, no. 8, pp. 696–710, Aug. 2009. [Online]. Available:
http://dx.doi.org/10.1016/j.jpdc.2008.09.001

[32] R. Xue, X. Liu, M. Wu, Z. Guo, W. Chen, W. Zheng, Z. Zhang, and
G. Voelker, “MPIWiz: Subgroup reproducible replay of mpi applica-
tions,” ser. PPoPP ’09.

[33] G. Holzmann, “The model checker SPIN,” Software Engineering, IEEE
Transactions on, vol. 23, no. 5, pp. 279–295, May 1997.

420419419419419419

