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ABSTRACT
Paxos-based state machine replication is a key technique to
build highly reliable and available distributed services, such
as lock servers, databases and other data storage systems.
Paxos can tolerate any minority number of node crashes in
an asynchronous network environment. Traditionally, Paxos
is used to perform a full copy replication across all partici-
pants. However, full copy is expensive both in term of net-
work and storage cost, especially in wide area with commod-
ity hard drives.

In this paper, we discussed the non-triviality and feasibil-
ity of combining erasure code into Paxos protocol, and pre-
sented an improved protocol named RS-Paxos (Reed Solomon
Paxos). To the best of our knowledge, we are the first to
propose such a combination. Compared to Paxos, RS-Paxos
requires a limitation on the number of possible failures. If
the number of tolerated failures decreases by 1, RS-Paxos
can save over 50% of network transmission and disk I/O. To
demonstrate the benefits of our protocol, we designed and
built a key-value store based on RS-Paxos, and evaluated
it on EC2 with various settings. Experiment results show
that RS-Paxos achieves at most 2.5x improvement on write
throughput and as much as 30% reduction on latency, in
common configurations.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems–client/server; distributed applications; distributed
databases; D.4.5 [Operating Systems]: Reliability–fault-
tolerance; H.3.4 [Information Storage and Retrieval]:
Systems and Software–distributed systems
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Paxos, erasure code, asynchronous message passing model,
consensus, state machine replication
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1. INTRODUCTION
Paxos-based state machine replication (SMR) has proven

to be an effective approach to build highly reliable distributed
services. For example, Google’s Chubby[4] replicates impor-
tant metadata through a couple of nodes, such as locks and
configuration files in a storage system[7][9]. Since Gaios[3],
Paxos has been used to replicate all user data instead of only
metadata. Furthermore, systems such as MegaStore[2] and
Spanner[8] use Paxos to replicate data across datacenters
globally.

A key challenge of data replication through Paxos is the
cost of network transmission and disk writes that need to
be flushed to disk to tolerate crashes. And as the size of
data increases, these costs increase. In an optimized Paxos
instance, the value is required to be sent to a quorum of
nodes at least once. And to tolerate more than minority
crashes, all nodes need sync to disk on every acknowledged
accept request in the accept phase. Both the network and
the I/O costs can be expensive to achieve low latency and
high throughput in a distributed system.

Erasure coding[22][18] is a very effective and common tech-
nique to reduce storage and network cost in data replica-
tion. Erasure coding encodes data objects into a config-
urable number of data fragments (including both original
shares and redundant shares). From any large enough sub-
set of these shares we can rebuild the original data objects.
The redundancy rate of erasure coding depends on configu-
ration. It is usually much smaller than making a full copy
replication.

Can we extend Paxos to support erasure coding, instead
of using the original value in Paxos? A naive approach to
combine Paxos and erasure coding is to encode the original
value into a majority of original data shares and a minority
of redundant shares, and then send one coded data share to
each acceptor. Because each share is smaller than the origi-
nal value, network and disk I/O costs are reduced. However,
this simple approach of injecting erasure code into Paxos is
incorrect, mainly due to the asynchronous message passing
model of Paxos (see details in Section 2.3).

In this paper, we examine the problem and present an
improved protocol named RS-Paxos (Reed Solomon Paxos).
By redefining the quorum number in each Paxos phase and
correlated configuration of erasure coding, RS-Paxos incurs
a huge reduction of message sizes, thus largely reducing net-
work and disk I/O costs. A side effect of RS-Paxos is that
it tolerates fewer failures than original Paxos in an instance.
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But this is acceptable in realistic systems because most fail-
ures are one or two nodes. This is also the same assump-
tion in EPaxos[20]. And by automatic reconfiguration of the
state machines we can tolerate more failures in practice.

Most real-world Paxos systems takes the leader-follower
design[4][8][6]. The leader acts as a distinguished proposer,
in order to avoid live lock and save one message roundtrip.
Leader serves all write requests and are in charge of propos-
ing values. A follower usually redirects all requests to leader,
unless the leader fails and it becomes the new leader. In
certain cases, it can also serve read requests with relaxed
consistency. RS-Paxos fits this pattern quite well. In RS-
Paxos, the leader caches the original value itself, while send-
ing coded shares to the followers. Both leader and follower
only need to flush the coded shares into disks. A follower
does not have to learn the original value immediately, since
it redirects all consistent requests to the leader.

In the remainder of this paper, first we briefly go through
the background knowledge and point out the incorrectness
of an intuitive approach in Section 2. Next, Section 3 gives
details of the design and algorithms of RS-Paxos. Section
4 presents a key-value store based on RS-Paxos. Section 5
is about implementation. We describe our experiments and
evaluate the system in Section 6. Section 7 discusses about
related work, and Section 8 concludes.

2. BACKGROUND AND PROBLEM
We begin by briefly describing the classic Paxos and era-

sure code algorithms, and an example showing the incorrect-
ness of directly injecting erasure code into Paxos.

2.1 Paxos and SMR
The consensus problem requires a set of distributed pro-

cesses1 to agree on a single value in spite of possible failures.
Paxos considers this problem in a partial-asynchronous sys-
tem (partial-asynchrony is further explained in Section 3.1).
Paxos assures that at most one value can be chosen (safety);
if there are only a minority of faulty processes, all correct
processes can eventually agree on a value (progress). Paxos
does not tolerate Byzantine failures: A process may crash
or fail to respond for an arbitrary long time; but it cannot
respond in an undefined way; message corruption can be
excluded by simple techniques such as checksums.

A single Paxos instance is barely useful in real systems.
The more practical use is running multiple Paxos instances
in a pre-defined order, such as to represent the state transi-
tions of state machine replication (SMR). SMR is a classical
approach to model and build a highly reliable and available
distributed system. SMR aims to make a set of replicas exe-
cute the same commands (or make the same transitions) in
the same order. For each state transition, a Paxos instance
is run to decide what is the next command. Paxos instances
can also run in parallel, as long as the decisions–commands
are executed in the same order.

An unoptimized Paxos instance could go as following:
When receiving client requests, a replica R picks the next
unused Paxos instance, sends prepare messages containing
a unique number to all replicas including itself. Upon re-
ceiving a majority of promises, R proceeds to send accept

1In following sections we will use terms of process, replica,
and server in a mixed manner, depending on context. They
are synonyms in this paper.

messages containing the command to all other replicas. If
these messages are also confirmed by a majority of replicas,
R then decides the command locally and notify all repli-
cas. The majority rules can be replaced with read and write
quorums. Any read quorum and write quorum must have a
intersection part.

The canonical Paxos takes at least two roundtrips to com-
mit a value. An important optimization in practice is Multi-
Paxos. Multi-Paxos let one replica be the distinguished pro-
poser and prepare a large amounts of instances at once, be-
fore the instances are actually used to propose values. This
leader-follower variant of Paxos is widely taken in many sys-
tems such as Chubby, Spanner, etc.

After optimized, there are still two worth-noticing aspects
of cost in Paxos. First, at least a full copy of the value need
to sent to each replica, in the accept phase (the value sent
in learn phase can be skipped, represented by a value id,
assuming the target has received this value before). Second,
in order to recover from failures, each replica has to log its
decisions to disk whenever it responds to prepare and accept
messages. In some cases, this can be avoided if we assume
there is always a majority of correct processes (such as each
process in a separate datacenter). But if we need to tolerate
a majority crash such as in a power failures, this logging is
necessary.
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Figure 1: A naive combination of Paxos and erasure
code. The configuration of erasure code is θ(3, 5). The
original shares (1∼3) are colored as blue ; the redundant
shares (4∼5) are colored as red.

2.2 Erasure Code
Erasure coding is a very mature technique used in storage

systems for data striping and fault tolerance. The princi-
ple of erasure coding is as follows. A data object is first
divided into m equal-sized fragments called original data
shares. Then, k parity fragments with the same size as
original data shares are computed, called redundant data
shares. This will generate a total of n = m + k equal-sized
shares. The erasure code algorithm guarantees any arbitrary
m shares out of total n shares is sufficient enough to recon-
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struct the original data. Both m and k are positive values
and configurable by users.2

Erasure code can reduce data redundancy in strict repli-
cation (full copy). Let r denote the data redundancy rate.
For a strict replication with n copies, r = n/1. For erasure
code, since each share is 1/m the size of the original data
object, r = n/m. For example, if n = 5, m = 3, k = 2,
the redundancy rate r = n/m = 5/3. The original data
can be recovered as long as there are 3 replicas that are not
permanently damaged. The space saved compared to full
replication is n− r = 10/3 size of the original data object.

2.3 Problem with a Naive Approach
Since Paxos and erasure code can both be configured to

be tolerant to a minority of failures, is it feasible that we
can intuitively merge the two algorithms? The answer is no,
it can be shown in a simple example.
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Figure 2: Incorrectness of an intuitive combination
of Paxos and erasure code. After P1 has decided the
value, P3 crashes, and P5 tries to learn the value by send-
ing prepare requests. The dotted line means the message is
delayed or lost.

As shown in Figure 1, suppose there are 5 processes run-
ning Paxos (each processes act as proposer, acceptor, and
learner at the same time). The Paxos protocol can toler-
ate any two crashes. The intuitive approach merging Paxos
and erasure coding would be to configure erasure code as
the same fault tolerant level as Paxos. In this example,
say dividing the data into 3 original shares, and computing
2 redundant shares, which can be denoted as θ(3, 5). The
original data can be recovered with any 3 pieces of the data
shares.

2There are many types of erasure codes, mainly in two cat-
egories: optimal erasure codes and near optimal erasure
codes. In this paper we only refer to Reed Solomon code, a
type of optimal erasure code.

However, this intuitive approach won’t tolerate two fail-
ures as expected. A simple example to reveal this is shown
in Figure 2. One proposer P1 successfully passes phase 1,
and goes into phase 2. In phase 2, it sends accept requests
to all replicas. Each of these requests contains a coded data
share. After a certain amount of time, it receives 3 acknowl-
edgements saying the proposal is accepted. According to
Paxos protocol the value is now legally chosen. But here,
if one of the replica P3 fails after this, a learner P5 would
never be able to recover the value, even though it may dis-
cover that there was a value accepted. Since it cannot gather
enough pieces of coded data shares, it is unable to recover
the original value and re-propose it again.

The nature of the problem lies: Paxos is a consensus al-
gorithm used for multiple processes to reach an agreement
on the same value, not 5 different values in the above case.
This is why we cannot directly use the same fault-tolerant
level configured erasure code on the value proposed in Paxos.
However, on careful analysis, we will find that the five val-
ues are not entirely independent to each other, they are still
related. The key observation of this paper is that from any
large enough subset of them we can recover the same value,
which we will leverage below.

3. RS-PAXOS
We now go through the details of RS-Paxos. First we give

a brief summary of the assumptions, models and goals of
our protocol. Next the detailed protocol, followed by a brief
summary of the proof structure. At last we give an example
of RS-Paxos in a common case.

3.1 Preliminaries
The problem is considered in a partial-asynchronous sys-

tem. The nodes in the system exchange information by send-
ing messages to each other. The messages can be delayed,
duplicated, or lost. But if a correct process repeatedly sends
a message to another correct process, eventually the message
will go through. A more formal definition of ”eventually” is
that only after an unknown period of time γ, the messages
can be delivered within a timeout ∆ if the source and the
target are both non-faulty processes.

The processes in the system act as the following roles.

• Proposer proposes values.

• Acceptor votes on values that are proposed by pro-
posers.

• Learner learns if a value is chosen based on the votes
of acceptors.

These roles are only logical, a process can and usually act
as multiple roles. Different systems may have different role
assignments. For example, a system may assign clients as
proposers and learners, and servers as acceptors and learn-
ers. However, in many practical systems such as Chubby,
clients do not directly propose values, but ask one of the
servers to propose as instead. This is also our model in this
paper.

To be correct and useful, RS-Paxos must guarantee the
following properties.

• Non-triviality: Only proposed value can be chosen.

• Stability: Decisions can not be altered.
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• Consistency: At most one value is chosen.

• Liveness (Progress): Eventually a value is chosen.

The first three guarantees are usually called safety guar-
antees. Non-trivially is usually trivial. Stability means that
for any process, if it decides a value at time t1, then for any
time t2 ≥ t1, it will still decide on the same value. Con-
sistency is the most important guarantee of safety, it means
that for any two processes p1 and p2, if p1 decides on a value
v1 and p2 decides on v2, v1 must equal v2.

The system can only make progress if there are a quorum
of non-faulty acceptors, and at least one proposer and one
learner that functions correctly.

3.2 Basic Protocol
The key principle of Paxos is that any two different ma-

jorities of processes have a non-empty intersection. And
from that intersection a process can learn if a value is cho-
sen or might yet be chosen. The insight of RS-Paxos is to
increase the size of any intersecting set, so that it is possible
to recover data from such intersections. Nevertheless, this
approach unavoidably decreases the fault tolerance number
of failed nodes.

Let N denote the number of acceptors; let F denote the
number of failed acceptors that can be tolerated. Assume
that proposers have different ids to identify themselves. As-
sume each proposer can generate a distinguished value id to
identify the value to be proposed.

RS-Paxos shares many similarities with Paxos. The pro-
posal in RS-Paxos includes following: 1) a ballot id, formed
with the proposer id and a natural number, making it glob-
ally unique 2) a value id, to identify the value, which is also
globally unique; 3) a coded data share, and the meta data
of erasure code configuration.

RS-Paxos includes two phases:
Phase 1
(a) The proposer chooses a ballot id, sends a prepare re-

quest to at least a read quorum (denoted by QR) of accep-
tors.

(b) If an acceptor receives a prepare request with ballot
id i greater than that of any prepare request which it has
already responded to, then it responds to the request with
a promise. The promise reply contains the proposal (if any)
with the highest ballot id that it has accepted. The proposal
contains a coded piece.

(c) The proposer waits until it collects QR promises. If no
value is ever found accepted, then the proposer can pick up
its own value for next phase. If any already accepted coded
piece is found in one of the promises, the proposer then
detects whether there are enough pieces in these promises
to recover the original value. Next, the proposer picks up the
recoverable value with highest ballot, recover it using erasure
code and use it for next phase. If no value is recoverable,
the proposer may also choose its own value.

Phase 2
(a) Based on the value v picked up in the previous phase,

the proposer generates accept requests for at least a write
quorum (denoted byQW ) of acceptors. Every accept request
should contain a coded piece of v. The piece is encoded with
a configuration of θ(X,N), meaning that it divides the data
into X original data shares, and computes (N−X) redun-
dant shares. After coding, the proposer sends these accept
requests to acceptors.

(b) If an acceptor receives an accept request with ballot
i, it accepts the proposal unless it has already responded to
a prepare request having a ballot j greater than i.

(c) If the proposer receives QW of acknowledgements, the
value is successfully chosen.

The two phase together with ballot i, we call it round i.
RS-Paxos is actually a superset of Paxos. In Paxos, X =

1. And if we take the canonical majority approach, QR =
QW = bN/2c+ 1, F = dN/2e − 1. In RS-Paxos, the size of
the value in each accept request is about 1/X of the original
value size in original Paxos.

The relationship between QR, QW , X, N is following:

QR +QW −X = N

This implies that any read quorum must have a non-empty
intersection with any write quorum, which is a key to guar-
antee safety.

The relationship between QR, QW , X, F , N is following:

F = N −max(QR, QW ) = min(QR, QW )−X

This tells us how to achieve the smallest data redundancy
given a fault tolerate level. With a fixed F (then also a fixed
max(QR, QW )), we have

X = min(QR, QW )− F

To get the maximum X, we need QW =QR (also common in
practice). The larger X is, the smaller the data redundancy
will be, the more network and I/O cost we can save.

3.3 Proof Framework
Due to space limitation, this paper only conveys a brief

proof framework. But given our proofs here, one can con-
struct a full proof such as in [16] [15].

Non-triviality is straight-forward. Since all values are
from proposers in phase 1(a), a value can only be chosen if
it has been proposed.

Consistency can be proved by the following proposition.
Proposition 1 For any two rounds with ballot ids i and

j, and j < i, if a value v has been chosen or might yet be
chosen in round j, then no acceptor can accept any code
pieces except those of v in round i.

Proposition 1 is equivalent to the following proposition.
Proposition 2 For any two rounds with ballot ids i and

j, and j < i, if an acceptor has accepted a coded piece of
value v in round i, then no coded piece other than those of
v has been or might yet be chosen in round j.

To prove Proposition 1, we only need to prove Proposition
2. To prove Proposition 2, we still need to prove another
proposition first.

Proposition 3 For any two rounds with ballot ids i and
j, and j < i, if a value v has been chosen or might yet be
chosen in round j, then the value must be recoverable in
phase 1(c) in round i.

Proof Sketch for Proposition 3 If a value v is chosen in
round j, it means that at least QW acceptors have accepted
one coded piece of that v. The proposer collects at least
QR responses after phase 1(b). The intersection part of QR

and QW is X, due to the protocol. It means from the QR

promises, at least X of them are from the QW acceptors
those have accepted the coded piece of v. Since the coding
configuration is θ(X,N), it means we only need X part to
recover the value. Thus, v must be recoverable in phase 1(c).
In the phase 1 of round i, If v is not chosen yet, for it to
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be chosen there must be at least QW of acceptors that will
accept the proposal in round j. This means these QW of
acceptors must see the accept message of round j before the
prepare message of round i, otherwise v cannot be chosen.
Since QR and QW have X acceptors in common, the value
must be recoverable in round i.

Now we can prove for Proposition 2 and Proposition 1.
Proof Sketch for Proposition 2 If an acceptor A has ac-

cepted value v from some proposer P with a round ballot i,
there must be a read quorum QR of acceptors have promised
to P with that ballot id i. If a different value v′ is chosen or
might yet be chosen in round j, P must be able to recover
v′ due to Proposition 3. If P recover such value v′, it will
use v′ as the value in the accept phase. Since P proposes v
to A, such v′ must not exists. Proposition 2 and proposition
1 are proved.

Because acceptors log their states into persistent storage
that can survive crash, proposition 1 and 2 also implies sta-
bility.

Each replica keeps sending message to one another until it
gets response. As long as at least a max(QR, QW ) of replicas
are non-faulty and messages eventually arrive, liveness is
ensured.
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Figure 3: An example of RS-Paxos. N=7,
QW =QR=5, X=3. With two lost accept messages and two
replica crashes, the system is still safe.

3.4 An Example
Now we use a simple example to demonstrate the principle

of of RS-Paxos. Suppose we have N=7 acceptors, and want
to tolerate F=2 possible failures. QW and QR are both set
to 5.

The procedure is shown in Figure 3. In phase 1, a pro-
poser sends prepare to all acceptors. After it collects QR=5

N QW QR X F
7 4 4 1 3
7 5 3 1 2
7 5 4 2 2
7 5 5 3 2
7 6 2 1 1
7 6 3 2 1
7 6 4 3 1
7 6 5 4 1
7 6 6 5 1

Table 1: Various configurations when N=7. Given a
fixed F , the configuration for maximum X is highlighted.

successful acknowledgements. It encodes the data with a
coding configuration θ(3, 7). Each coded data share is 1/3
size of the original data. Then it sends accept requests to ev-
eryone. Within each of these requests is a coded data share.
Then it waits for QW =5 successful acknowledgments, after
which the value is considered successfully decided.

After the coded value pieces have been accepted by 5 ac-
ceptors, if another proposer tries to propose, it will collect
at least 3 coded data shares. From these data shares it can
recover the original value and use that to propose again.

Table 1 shows about all possible configurations of RS-
Paxos, when N=7. When a fault tolerance number F is cho-
sen, there are different choices of QR, QW , and X. We high-
light these lines in table that reaches the maximum X. With
a maximum X, smallest amount of data (1/X) is needed to
be sent during phase 2.

4. A KEY-VALUE STORE BASED ON
RS-PAXOS

In this section we go through our key-value store3, which
is designed to demonstrate the capacity of RS-Paxos. The
rationales and techniques we use are mostly taken from pre-
vious Paxos-based systems[8][2] . This key-value store can
be thought as a minimal functional component of these sys-
tems.

4.1 Architecture
The architecture of the key-value store is shown in Figure

4. Each a server has a persistent storage space attached.
This storage space could be a local key-value datastore such
as LevelDB and Redis. Or it could be distributed key-value
storage such as HBase, depending on application require-
ments. Each server is responsible for one or more particular
data shards. Of all the replicas in a shard, there is a leader
replica which can provide consistent fast read and function
as a distinguished proposer. Upon a client request (write),
a leader start a new instance of Paxos, using it to commit
a write ahead log. Once the Paxos instance commits, the
leader commits the change log to its local persistent stor-
age and returns to client. The Paxos instances of each data
shard are committed and executed in a linearizable sequence.

3The system in this paper may seem closer to an object store
to some readers. We just use the name of key-value store for
simplicity.
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Leader Follower Follower 

Storage Storage Storage 

Client 1 Client 2 

Figure 4: Architecture of the replicated key-value
store

4.2 Data Shards and Paxos Groups
To improve throughput, data are partitioned into different

shards. Operations on each shard run in a separate Paxos
group. This is one common solution to reduce the unnec-
essary ordering inside a Paxos group, since canonical state
machine replication requires all commands committed and
executed in order to ensure linearizability.

To simplify, the number of shards are statically config-
ured. The mapping relations of keys into shards is defined
by a deterministic mapping function. The granularity of
partition is controlled by users by configuring the number of
shards and defining a proper mapping function.

4.3 Leader-leases
We use a very simple leader lease mechanism. Suppose

the maximum time drift between different servers is δ. The
leader maintains a lease which confirms its leadership in next
∆ period of time. Each follower can only drops such lease
in ∆ + δ of time.

The above leader lease mechanism can guarantee a solo
leadership if all replicas always obey the time drift of δ.
Spanner does this by introducing customized hardware (atomic
clocks, etc.) and interfaces. In more common systems this is
usually done by periodically time synchronization between
replicas. Notice that even that leases are broken in rare cir-
cumstances and two replicas believe themselves to be lead-
ers, (RS-)Paxos still guarantees safety of the system. But
fast read may indeed return inconsistent data in such cases.

4.4 Data Operations
On client startup, it firstly gather the information that

which replica is the leader of each data shard, and save this
information in its local cache. Clients send their requests
to the leaders. On most client requests (except fast read),
the leader use RS-Paxos to commit the command as a write
ahead log, then modify the actual data in its local storage.
Write. On write requests, the leader commit a log using
RS-Paxos, containing operation type, key and value. Only
the value are coded into pieces. This is for followers to con-
veniently tracking which keys are modified. Upon successful
commits, the leader (which has the whole value) can write to
its local storage, the follower (which only holds part of the
value) also write to its local storage, but tag this value as
incomplete. Notice that writes to local storage do not have

flush to disks, because we already have a persistent write
ahead log committed to disks by RS-Paxos.
Read. There are three kinds of reads. 1) Fast read. The
leader can return values in its local storage. The results are
correct as long as leader leases works correctly. If leader
leases are malfunctioning, the results may be inconsistent.
For example, if two replica both consider themselves as lead-
ers, one of them may server client requests with outdated
data from its local cache. We do not have particular solu-
tions for this, neither do we make the problem worse, and it
is not our main concern. 2) Consistent read. The leader can
invoke a explicit Paxos instance, which works as a mark,
to read the value. It returns the value on commit of this
instance. This approach always return consistent value in
spite of the correctness of leader leases. 3) Recovery read.
This happens when a new leader comes up to replace the
old one. Because the new leader only has a piece of the
value, it needs to scan through its RS-Paxos history, find
the most recent write to that key, and run an explicit RS-
Paxos to gather enough pieces of the value before it returns
to client. Recovery read can also function as snapshot read
if the application requires a snapshot version from a non-
leader replica.
Insert. For simplicity, the insert operations can be treated
as regular writes.
Delete. Delete operations are treated as write(key, NULL).

4.5 Crash and Recovery
When a follower crashes within the fault tolerance level of

the system. The system can still correctly server requests.
Actually, the throughput of the system might increase be-
cause that fewer messages due to the crash.

If the error is fixed and the crashed server comes back
online, it is essential that it is able to recover all its states
including all including the maximum ballots it replied to
and all the values it accepted. Otherwise the system will
misbehave. That’s why it needs to log all these decisions
into disks before sending out the reply.

On recovery, the server needs to catches up all the chosen
values in the instances it has missed. In Paxos, it only needs
to ask for any other server that is aware of these values.
In RS-Paxos, only the leader is aware of these decisions.
Therefore, the leader needs to re-code the data and sends
the corresponding fragment to the recovering server.

If a leader crashes, there will be a time window during
which the server cannot server any new requests until a new
leader takes over. Leader election can be a complex issue.
Deciding a new leader is actually also a consensus problem.
We simply use another Paxos instance to decide the new
leader. After the new leader starts to serve requests in the
system, it needs to perform recovery read to rebuild a local
cache, in order to server fast read requests from clients. This
will affect system performance. Write requests, however, are
not influenced by this. When a new write request arrives, the
leader can simply issue a new RS-Paxos instance containing
the write request, even if it has not observed the previous
value of this key.

4.6 Reconfiguration
Our design includes a classical way to reconfigure Paxos-

based the state machines, aka view change. On adding a
new replica or removing a current replica, a special Paxos
instance view change is proposed, containing the new view
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of the replicas. Each view change will give the Paxos group
a new epoch number. Each epoch number represents a dis-
tinguished configuration of the system. Each Paxos instance
should be attached with a correct epoch number to guaran-
tee the quorum calculation corresponds to a correct view.

The view change also leads to new configuration of erasure
coding. For example, the system currently has N=5 repli-
cas, quorum Q=4, coding configuration θ(3, 5). Now a new
replica is added to the system, and the new configuration
becomes N ′=6, Q′=5, θ′(4, 6). Strictly, the system needs to
issue new RS-Paxos instances to re-code the data with the
new configurations.

RS-Paxos contains a few optimization to reduce this cost.
First, if the new configuration keeps the same k in the new
θ(k,m), it is unnecessary to resend the original coded frag-
ments again in the new RS-Paxos instances. For example,
a previous configuration of N=5, Q=4, θ(3, 5) is changed to
N ′=5, Q′=4, θ′(3, 3). In this case there is no need to re-
spread the data. The system only needs to launch an in-
stance to ensure that every replica has its own data share.

Another important optimization also aims to avoid re-
sending and recoding all data. If the quorum in the new
configuration is greater than the number of original shares
in old configuration, i.e. Q′≥X, the system only needs to
confirm that every server is already holding its data share.
For example, with the old configuration N=5, Q=4, X=3,
and a new configuration N ′=4, Q′=3, X ′=2, the system only
needs to confirm every server holds all its data shares cor-
rectly when applying a view change. The insight of this
optimization is that the fault tolerance level rules that at
most F=N−Q errors can be tolerated during an RS-Paxos
instance. If the value is chosen at each server and each data
share is stored correctly, the actual fault tolerance becomes
N−X.

5. IMPLEMENTATION
Our prototype is implemented using C and C++. The

core RS-Paxos framework is implemented in C. The key-
value store part is implemented in C++. Since RS-Paxos
is a superset of Paxos, we chose to firstly build a Paxos
implementation, and then modified it to adapt RS-Paxos
protocol.
RPC. We built an asynchronous RPC module for message
passing between processes. It uses TCP as transmission pro-
tocol. This layer ensures that common network errors are
handled properly, such as occasional packet loss and dupli-
cate. Unit tests showed that it can complete over 1 million
batched ADD operations in 1 second between two servers (us-
ing single CPU core each) in our local clusters.
Paxos. We built a Paxos implementation from scratch. Our
Paxos implementation includes common optimization such
as: 1) The leader do a batch prepare for a large amount of
instances before it actually use the instances; 2) The commit
message is delayed and bundled together and sent off the
critical path of leader.
Erasure Code. We chose to use Zfec[25] as the erasure
coding library, instead of on our own. A recent performance
evaluation[21] shows that Zfec performs well and has rela-
tively low cost.

6. EVALUATION
This section presents an experimental evaluation of RS-

Paxos as the core protocol in a key-value store. The exper-
iments include a series of micro-benchmark and a dynamic
workload, including both intra and inter datacenter situa-
tions.

6.1 Setup
To test for how our key-value store functions, we config-

ure the system with 5 replicas within a Paxos group (N=5).
We have to make a trade-off in choosing the number of repli-
cas inside a Paxos group. The benefits of RS-Paxos is more
obvious as the number of replicas increase, but it is imprac-
tical in real systems to have a 100-replica Paxos group. If
the size is very small, for example a 3-replica Paxos, RS-
Paxos has no win over Paxos because it has to set X=1 to
tolerate a failure, making it no different to Paxos. At last,
we chose N=5, which is a common configuration in practical
systems[4].

Both read and write quorum size Q=4, which means X=3,
theoretically the message size should be about 1/3 about the
original size (if the value is large enough). If one replica fails,
the system is configured to change to a new quorum Q=3,
and change to a new erasure coding configuration with X=2.
This strategy allows the system tolerates two uncorrelated
failures, given enough time for view change.

To increase parallelism, the whole key space is partitioned
into 100 Paxos groups, following the typical configuration in
practical Paxos systems[8]. A replica is configured to be
the leader, which is responsible for all client write requests
and is able to do fast read. In spite of our configuration,
finer granularity of data sharding is totally possible. In real
systems there could be thousands of machines and millions
Paxos groups, and each server serves a certain number of
Paxos groups[8]. But since scalability is not our concern in
this paper, our full replication configuration is sufficient to
observe the improvements of RS-Paxos to Paxos.

For comparison, we also test for a key-value store based
on Paxos. The group size is also set to 5. Although strictly
speaking, a 5-node Paxos offers stronger fault-tolerance than
RS-Paxos. It can tolerate two concurrent failures, while RS-
Paxos can only tolerate one at a time. Another possible con-
figuration is to set up a 3-node Paxos group, which tolerates
exactly one failure. Theoretically, the data redundancy of a
3-node Paxos group is 3/1; the data redundancy of a 5-node
RS-Paxos group is 5/3. Therefore, a 5-node RS-Paxos is
still better than a 3-node Paxos. The transformation from
RS-Paxos to Paxos is very easy, simply to configure the quo-
rum to be a simple majority and turn off the erasure coding
function. In our evaluation, our major considerations in-
clude latency, throughput, computational cost and failure
recovery.

Our experiment is run on Amazon EC2 platform. We
use the extra-large EC2 VM instances in the us-east-1

region. Each VM has 7GB memory and 8 virtual CPU cores,
and connected by a gigabyte Ethernet network. 5 VMs are
deployed as servers, and 10 VMs are deployed as clients.
Each client VM serves up to 100 logical clients.

The above configuration shows the performance of RS-
Paxos compared to Paxos in a local cluster environment.
Inspired to see how RS-Paxos performs in various environ-
ments, we also emulate a wide-area deployment by adding
a 50 ± 10ms delay to the network interface, thus having a

67



1K 4K 16K 64K 256K 1M 4M 16M
Data size

0

20

40

60

80

100

120

140

La
te

nc
y

(m
s)

Paxos.HDD
Paxos.SSD

RS-Paxos.HDD
RS-Paxos.SSD

(a) Local cluster

1K 4K 16K 64K 256K 1M 4M 16M
Data size

0

50

100

150

200

250

300

La
te

nc
y

(m
s)

Paxos.HDD
Paxos.SSD

RS-Paxos.HDD
RS-Paxos.SSD

(b) Wide area

Figure 5: Micro-benchmark: Average Latency

100± 20ms latency for a message roundtrip. Also the band-
width is limited to 500Mbps. We choose this rather than
deploy in actual different EC2 datacenters, in order to keep
the ability of a large bandwidth, to emulate the private net-
work connecting different datacenters in enterprises.

To evaluate the performance of RS-Paxos in various stor-
age environment, we use two kinds of EBS volumes in our
benchmarks. One is regular EBS volume, with around 100
IOPS, representing traditional hard drives; the other is high-
performance EBS volume, with over 4,000 IOPS, represent-
ing high performance solid-state drives. We will use .HDD
and .SSD as postfix to distinguish in the following evalua-
tion, such as RS-Paxos.SSD.

6.2 Micro-Benchmark
Our major concern is the performance of write requests,

including the possible encoding overhead and the potential
benefits of smaller amount of network transmission and disk
flushes. And since we almost have no overhead on read re-
quests compared to Paxos, we should supposedly have sim-
ilar read performance. Accordingly, in this benchmark we
test RS-Paxos with various sized write requests, to its maxi-
mum throughput. The value size ranges from 1KB to 16MB.
We believe that larger sized data are usually chopped into
smaller chunks, such as 16MB each.

6.2.1 Latency
Figure 5 shows the latency of various sized write requests

in both local cluster and wide area. When measuring la-
tency for a given size request, there is a fixed cost that the
client send the request to the server, and the server reply
to client when it finishes. Since this cost is identical for
both Paxos and RS-Paxos, we remove it from our results for
better comparison of cost that matters.

In the local cluster, when the request size is small (lower
than 64KB), latency of both Paxos and RS-Paxos is domi-
nated by file system flushes. Thus SSD can commit within
10ms, while HHD takes 20-30ms. RS-Paxos performs slightly
worse than Paxos, due to extra computational time for cod-
ing. But for data object larger than 256KB, RS-Paxos has
an obvious advantage. It achieves a 20%-50% lower latency,
because it reduces the number of network packets and the
number of the disk I/Os.

In wide-area deployments, the network becomes the dom-
inating factor in latency. The CPU cost is hardly affecting
RS-Paxos. RS-Paxos performs almost the same as Paxos at
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Figure 6: Micro-benchmark: Throughput

small size requests. And with larger objects, the advantage
of RS-Paxos is more obvious, saving more than 50ms.

6.2.2 Throughput
Since RS-Paxos can largely reduce the amount of data

needed to be sent over network and flushed into disk, it
is expected to have much better throughput than Paxos,
especially for large writes. This is proved in this benchmark.
Figure 6 show the write throughput of the system in both
local cluster and wide-area.

In any deployment, the system is more disk-bounded for
small writes. This is more obvious in HDD than SDD, which
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is easy to understand because HDD has a much lower ca-
pability of handling small writes than SDD. When the data
size is small, RS-Paxos performs no better than Paxos be-
cause it has the same amount of disk seeking and writing,
touching the limit of disk access rates.

For HDD deployment, as data size grows larger than 64KB,
the system becomes both network and disk bounded. And
disk cost lies mainly on writing, rather than section seeking
with small objects. In such case RS-Paxos performs about
2.5x better than Paxos, which is a giant improvement. For
SDD deployment, this turning point comes smaller between
4KB and 16KB, due to its better performance with small
writes.

6.2.3 CPU Cost
The major CPU cost in the system can be categorized as

follows: 1© Paxos logic; 2© system calls such as epoll; 3©
thread switching and synchronization; 4© encoding and de-
coding; 5© marshalling and unmarshalling. The overhead
that RS-Paxos has over Paxos is mainly on 1© 4© 5©. We try
to measure and compare the CPU cost of the system by peri-
odically sampling the CPU usage in the micro-benchmarks.
In different setups, the CPU cost fluctuates around 10∼20%
per core, and RS-Paxos barely shows an observable overhead
compared to Paxos. This is reasonable since such storage
system is severely network and disk bounded, rather than
CPU bounded. Our observation does not conflict with the
fact that erasure coding may cause more overhead in other
systems, because the amount of data the system handle per
second is far smaller than it can compute in erasure coding.
Even with the maximum throughput, the amount of data
the system only needs to encode is less than 50MB. More-
over, it proves that it is fair to trade CPU time for a better
system throughput in such storage systems.

6.3 Macro-Benchmark
To evaluate the performance of RS-Paxos in various work-

load, we built a macro-benchmark following Intel’s COS-
Bench[27]. The benchmark include four dynamic workloads,
with different size ranges and kinds of requests.

One dimension to distinguish the workloads is object size:

• SMALL objects. Size range: 1KB∼100KB.

• LARGE objects. Size range: 1MB∼10MB.

Another dimension is read write ratio:

• WRITE intensive. Read write ratio is 1:9.

• READ intensive. Read write ratio is 9:1.

Each combination of the two dimensions above represents
a dynamic workload. Every workload simulates the charac-
teristics of real world workload. For example, the SMALL-

READ workload represents a web hosting service, and the
LARGE-WRITE workload represents an enterprise backup ser-
vice.

In this benchmark throughput is our major concern. The
results are as shown in Figure 7. In both local cluster and
wide area, for small objects, the throughput of SSD is much
better than HDD. This is true for both Paxos and RS-Paxos,
which proves the same conclusion as in micro-benchmark,
that small object size request is mainly disk bounded. Also,
for large objects, the difference between HDD and SSD is
much less obvious, since it is limited by bandwidth.

In either case, the read performance of RS-Paxos is almost
identical to Paxos. This fits our expectation because Paxos
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Figure 7: Throughput in different dynamic work-
loads

and RS-Paxos share the same mechanism in reading. Both
of them do a fast read from local copy as consistent read,
when leader leases holds up.

RS-Paxos performs much better than Paxos in the LARGE-

WRITE workload, for both HDD and SSD. It also performs
better in SMALL-WRITE workload, for SSD. This case sug-
gests that as the disk performs increases, the advantage of
RS-Paxos is more obvious, and the threshold of object size to
observe that advantage will decrease, unless another bound-
ary is touched, such as network or CPU.

6.4 Availability
In this part we evaluate the the behavior of RS-Paxos

under uncorrelated failures. In our configurations, RS-Paxos
can tolerate 2 uncorrelated failures, under the conditions
that there is enough time for the system to perform view
change between the failures.

To reduce the statistical influences of possible time skew
on different machines in our observation, we choose to do
this evaluation in the wide-area deployment. The test flow
goes as following. Initially we keep the server fully loaded.
Next we shut down the leader replica R1. After a while
another replica R2 should become leader. Then we shut
down R2. During this procedure we keep observing system
throughput on the next coming leading replica.
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Figure 8: Fail-over time. The first crash is triggered at 10s; the second crash is triggered at 20s.

We are also interested in different kinds of workloads. Be-
cause if it is read-intensive workload, a new leader must
perform recovery read on client read requests. So the test
is done twice, once with write intensive and once with read
intensive workload.

Results are as shown in Figure 8. For both RS-Paxos
and Paxos, when the current leader is killed, there is a time
window where system throughput drop to zero. After the
rest replicas wait for the lease to timeout, a new leader will
be elected before the system goes back to normal. This time
period is the same for RS-Paxos and Paxos, since RS-Paxos
does not incur any overhead in design for view change.

After the leader is elected, there is a period during which
the system throughput climbs to its maximum. For write
intensive workload, RS-Paxos has almost the same recovery
time as Paxos because RS-Paxos can directly handle writes
without recover the previous value. Notice after each failure,
the throughput for write workload actually becomes higher
than before. This is because the amount of message to finish
a (RS-)Paxos instance decreases with fewer nodes in the
system.

For read intensive workload, it takes a longer time for
RS-Paxos to climb up to its maximum throughput. This
is because the new leader replica does not hold the actual
object value in its local storage. So the new leader has to
perform a recovery read for every missing object. The cost
of a recovery read is similar to a write.

7. RELATED WORK
In the last decade, Paxos[14][13] has become a de facto

standard for state machine replication[23]. Many practical
systems choose to use Paxos to synchronously replicate their
states across multiple nodes. Chubby[4] is one of the earliest
industrial implementations of Paxos. It uses Paxos to repli-
cate critical metadata such as configuration files and system
views.

Later on, there are more and more systems using Paxos to
replicate data, as well as metadata. Many research database
systems[1][24][26] use Paxos (at least as an option) to repli-
cate data records, in a single site or across sites. Google has
published two systems, MegaStore[2] and Spanner[8]. Both
of them use Paxos to replicate data record globally.

Besides database records which are usually of small size,
there are also systems using Paxos to replicate larger data,
such as files and data objects. This is also currently the
target system of RS-Paxos. Gaios[3] presents a design of

building a high performance data store using Paxos-based
replicated state machines. There are also other file system
designs[1] using Paxos as the replication module.

The original Paxos is more of a research theory than a real-
system protocol. It is seldom used without any optimiza-
tion. There are various optimization directing on different
dimensions to reduce network messages. The most common
optimization is Multi-Paxos[6]. A long-lived leader can act
as the distinguished proposer. It can issue prepare requests
for next coming Paxos instance before it is executed. RS-
Paxos is totally compatible with Multi-Paxos, and we have
adopted it in our implementation and evaluation.

Some Paxos-based systems do not take the leader-follower
approach, such as Round-robin Paxos, proposed in Men-
cius[19]. Each participant in the system proposes in an in-
dependent set of instances which are pre-defined. On execu-
tion, these instances are ordered in a round robin manner.
In such case every participant can propose without conflict,
getting rid of the leader bottleneck. It is feasible to merge
Round-robin Paxos and RS-Paxos together. But a replica
may have to issue a recovery read to read the value proposed
by other replias.

There are other optimizations those can not be easily com-
bined with RS-Paxos, like Fast Paxos. Fast paxos allows a
client directly sends its proposal to each accepter, bypassing
the leader. It saves a message trip than sending the proposal
to the leader and let leader re-propose it to acceptors. Fast
Paxos has a fast quorum and regular quorum. Normally it
runs in fast quorum, on conflicts it backs off to a regular quo-
rum. The reason it is hard to combine RS-Paxos and Fast
Paxos is that they both modify the quorum definition. It
is still possible, but may require cautious work to guarantee
the correctness of combination.

The same goes with EPaxos[20]. EPaxos requires client
send requests to a nearby server. And it allows every server
node to propose value without conflict in common cases.
Every proposal is attached with extra dependencies. Based
on these dependencies, each server can execute instances in
a consistent and efficient manner. It is also not a simple job
to combine EPaxos and RS-Paxos, because EPaxos alters
the quorum definition as well.

IO batching is also an important engineering technique
used in practical Paxos systems and other systems[6], in or-
der to reduce disk and network cost to improve throughput.
Usually the server would delay all disk write requests for a
small time window (say 10ms), save all the write log in a
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cache, and then flush them together. This is a good utiliza-
tion of disk resources, especially when disk performs badly
handling small writes. The same batching techniques also
goes with RPC, with similar principles. Batching is also an
orthogonal optimization to RS-Paxos.

Erasure code[22][18] has been used in many distributed
systems such as [12][5][17], in order to reduce storage and
network cost. When doing replication, these systems have
stronger assumptions about messages passing model and
failures. They assumes a more ”synchronous” model of the
network. If two servers are both healthy, messages must be
delivered within a timeout. If the message cannote be deliv-
ered within the timeout, the server must have failed. This
model does not work properly when there is long message
delay or message loss. In another point view, RS-Paxos also
points out how to do erasure coding correctly in an asyn-
chronous network.

There are many recent works on erasure coding optimiza-
tions[10][11], including reduced the size of data shares, ef-
ficient recovery mechanisms, etc. These works have very
different perspectives from our work. However, we believe
RS-Paxos can benefit from them with careful revisit and
combination. On the other hand, rethinking these works in
an asynchronous messaging passing model may also lead to
promising results.

8. CONCLUSION
In this paper we pointed out a new direction to optimize

Paxos protocol. By combining coding techniques into Paxos
we can largely save the cost of network transmission and
disk flushes. We summarized the possible problems in intu-
itive approaches, analyzed the requirements for safety guar-
antees of Paxos in an asynchronous message passing model,
and gave an improved protocol RS-Paxos, combing Reed
Solomon code with Paxos. We designed and built a key-
value store based on RS-Paxos. The experiment results of
RS-Paxos is very promising. It shows that RS-Paxos im-
proves throughput by 2.5x in common configurations, with
reasonable extra cost and a minor relaxation on fault toler-
ance level.
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