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Abstract—X-RDMA is a communication middleware deployed
and heavily used in Alibaba’s large-scale cluster hosting cloud
storage and database systems. Unlike recent research projects
which purely focus on squeezing out the raw hardware perfor-
mance, it puts emphasis on robustness, scalability and maintain-
ability of large-scale production clusters. X-RDMA integrates
necessary features, not available in current RDMA ecosystem,
to release the developers from complex and imperfect details.
X-RDMA simplifies the programming model, extends RDMA
protocols for application awareness, and proposes mechanisms
for resource management with thousands of connections per
machine. It also reduces the work for administration and perfor-
mance tuning with built-in tracing, tuning and monitoring tools.

X-RDMA has been deployed in several large-scale clusters with
over 4000 servers in Alibaba cloud since 2016. It can save at least
70% development and maintenance time over RDMA, effectively
improve performance and reduce network jitter especially when
production servers are under pressure. It also helped locate
over 30 issues in different layers of productions with over 5000
connections for each server on average.

Index Terms—RDMA, middleware, large-scale deployment

I. INTRODUCTION

RDMA network is more and more popular in modern data
centers due to the dramatic improvement of performance.
The newest generation RDMA NIC (RNIC), ConnectX-6
Infiniband NIC [1], can support 200Gb/s bandwidth with an
ultra-low latency (nearly 0.6 ps). There are plenty of recent
works focusing on how to squeeze out the raw performance
of RDMA in several specific use cases, including key-value
stores [2]-[5], file systems [6], [7], graph computing [8],
virtual machine migration [9], etc. For instance, based on hard-
ware features, Kalia ef al [4] proposed several optimization
methods to gain a 2x throughput improvement. However, raw
performance gains of RDMA are far from being enough when
faced the concerns in large-scale production environments.

The complexity of native RDMA library is the main hin-
drance for developers to build efficient RDMA based applica-
tions. They need to be familiar with the concepts of remote
memory accesses, queue pairs, as well as many other essentials
on RDMA to better construct their applications. One important
semantic gap between RDMA and socket programming is that
the remote read/write is quite different from the connection
based programming paradigm. Sender side has no awareness
of the receiver side applications’ processing progress and
aliveness. This makes it impossible to port existing commercial
applications directly to RDMA-enabled clusters. For debug-
ging and tuning, with flexible and complex access patterns
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provided by the underlying hardware and programming in-
terface, it is actually very difficult for developers to find the
fundamental causes of performance bottleneck. Sometimes, it
cannot be easily identified whether the performance problem
is related to RDMA or not. In addition, large-scale production
systems have to face the distinct performance jitter [10] and
congestion [11], [12]. These issues rarely show up in small-
scale and controllable experimental settings. Such problems
can easily hurt the overall performance of applications running
on over hundreds of machines with thousands of connections
for each machine. Large messages are yet another issue as
they increase the probability of incast congestion.

In this paper, we share our experiences on large-scale
RDMA deployment, and how they inspire our designs of an
RDMA based communication middleware, called X-RDMA.
X-RDMA is heavily motivated by the commercial production
requirements: robustness, efficient resource management, and
convenient tools for debugging and performance tuning. It
extends the current protocol by adopting seq-ack window and
keepAlive option. The extended protocol can improve the sys-
tem robustness by enabling RDMA on traditional applications.
X-RDMA uses hybrid polling and a “run-to-complete” thread
model which reduces memory footprint by using per-thread
cache for connections and RDMA-enabled memory. It also
adopts an RDMA Send/Write/Read mixed message strategy
to balance performance and memory utilization. Furthermore,
extra flow control strategies are integrated into X-RDMA to
remedy DCQCN [11] for smoothing network. All these tech-
niques are used not only for efficient resource management but
also for alleviating network jitter and congestion. X-RDMA
has its own built-in analysis framework tracing, tuning and
monitoring. They can be effectively used for understanding the
current system status, performance tuning, as well as locating
and then fixing bugs.

X-RDMA has been deployed and heavily used in Alibaba
for nearly two years. Almost all RDMA based platforms and
applications including production cloud databases and storage
systems are using X-RDMA instead due to its various benefits.
X-RDMA can improve the total network bandwidth usage by
24%, lower the average latency by 5% (5.60 us compare to
5.87 pus in ucx—am-rc of UCX). Besides, it could effectively
mitigate network jitter and improve 24% throughput by using
extra flow control and resource management when congested.
With X-RDMA, developers can save at least 70% development
and maintenance time over RDMA. At the same time, devel-
opers have found 20 potential issues via its analysis frame-



work before application deployment and located 10 issues in
different layers of production application after deployment. X-
RDMA has helped the overall production platform to smoothly
support annual sales event with extreme large traffic. Overall,
this paper makes the following contributions:

I. We study and share our experiences and identify issues of
deploying large scale production RDMA network.

II. We analyze issues, abstract design principles, identify
production requirements, and propose our solutions.

ITI. We implement X-RDMA, a user-space middleware to ful-
fill these requirements. It is light-weight but fully functional,
offering some components urgently needed by the industry.
IV. We have conducted several stress tests, micro-benchmarks
and three real-world applications in the Alibaba Cloud to
evaluate the performance of X-RDMA.

II. BACKGROUND

A. RDMA Programming Model

Our practices at Alibaba show that native Ethernet cannot
satisfy the extreme performance requirements from the cloud
database/storage systems. Beyond ultra-low latency (usually
around 2 ps) and high throughput, RDMA also supports zero
copy and kernel bypass, and hence can reduce the overhead
associated with traditional network protocol stacks including
context switch, protocol processing and data copying [13].

RDMA supports two commonly used modes: reliable con-
nection (RC) and unreliable datagram (UD). In production
environments requiring high reliability, applications use RC
mode to guarantee hardware-layer reliability. RDMA has two
communication paradigms: RDMA Write/Read/Atomic which
is memory semantics and RDMA Send/Recv similar to tradi-
tional Ethernet (two-sided). RDMA Write/Read is known as
one-sided operation which can access remote memory without
peer side CPU involvement.

RDMA programming model has quite a few abstracts and
complex structures [14]. Queue Pair (QP) is a crucial building
block that represents a pair of completion queues (CQ):
Send Queue (SQ) and Receive Queue (RQ). To establish a
connection, each side should create and initialize a QP. Before
connection establishment, a node should create a protected
domain (PD) and then use this PD to register one or multiple
memory regions (MR) with a unique remote key (rkey). Access
to memory protected by MR is allowed only if rkey is correct.
Each RDMA operation requires to post a work request (WR)
to the corresponding CQ. Notice that each CQ has a depth:
the number of queuing WRs cannot exceed. In the two-sided
mode, the receiver should pre-post a WR into its RQ, then the
sender posts a send request and indicates the buffer address
of the payload. Finally, the receiver should poll this RQ to
ensure the arrival of the packet. After completing a RDMA
operation, in most cases, a completion queue entry (CQE)
will be generated. In the one-sided mode, only the sender
side needs to post a WR. One-sided RDMA operations always
have better performance than two-sided RDMA operations [3],
[15], [16]. Additionally, both RDMA Write and Send support

an extra immediate data which can notify receiver side
immediately with an uint_32 data.

Different from traditional socket programming, RDMA
developers should indicate the source address, destination
address, and transmission data size for communication. These
memory regions have to be registered as RDMA-enabled
memory. Both sides need to ensure RDMA-enabled memory
is available until completion of the transmission.

In conclusion, RDMA programs require a complex ritual:
initializing context, registering memory, establishing connec-
tions, exchanging meta-data, creating QP, modifying QP to
“ready to send/receive” and finally posting/polling WR/CQE.

B. Network Deployment at Alibaba

Alibaba’s data center network is an Ethernet-based clos
network [17]. We call this architecture as HAIL (High
Availability, Intelligence and Low latency). Distinct from
previous network stack techniques, HAIL implements both
active-active and stackless Top of Rack (ToR) simultaneously
with a new feature in kernel and switch hardware.
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Fig. 1: RDMA Network at Alibaba.

As shown in Figure 1, a typical data center at Alibaba
has three layers: the spine layer, the leaf layer, and the ToR
layer. In a common configuration, forty nodes connect to a
ToR switch. ToR switches connect to leaf switches and leaf
switches connect to spine switches, as usual in general clos
networks. Each machine is equipped with a dual-port RNIC.

C. RDMA Use Cases at Alibaba

RDMA has three major implementations: Infiniband [18],
RoCE/RoCEv2 [19], [20] (RDMA over Converged Ethernet),
and iWARP [21] (Internet Wide-Area RDMA Protocol). Be-
sides, other manufacturers such as Cray, Fujitsu, and Intel
(Omni-Path [22]) have their own solutions which are similar
to RDMA. Though Infiniband protocol is the only one which
has native support, it needs Infiniband and special switches
as the infrastructure. Both RoCE and iWARP are based on
RDMA-enabled NIC (RNIC) with IP/TCP/UDP protocols in
the network layer to allow RDMA operations over Ethernet.
Especially, RoCEv2 relies on Priority based Flow Control
(PFC) [23] to enable a drop-free network. Alibaba uses Ro-
CEV2 to guarantee compatibility with TCP/IP and adopts fine-
tuned DCQCN [11], [24], which is an end-to-end congestion
control protocol.

We will introduce three representative applications in detail
to illustrate the requirements in Alibaba’s data center: En-
hanced Solid State Drives (ESSD), X-DB and PolarDB [25].
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Fig. 2: The usage of RDMA in the productions.

As shown in Figure 2, Pangu is a high-reliability, high-
availability, and high-performance distributed file system de-
veloped by Alibaba Cloud. Similar to Ceph [26], there are
two key components (block server and chunk server) on each
server in Pangu. Each block server receives data from front-
end (e.g., virtual machines in ESSD) and distributes two or
three copies to chunk servers on different machines via full-
mesh RDMA communications. Currently, two core products
at Alibaba use Pangu as distributed storage: ESSD and X-
DB. The ESSD’s half of I/O path is from virtual machine
with QEMU/KVM [27] virtualization to Pangu. X-DB is a
distributed database which provides high availability, strong
ACID, and horizontal scalability for transaction systems (e.g.,
an online shopping website). The front-end of X-DB is a
MySQL instance in Docker [28] and uses RDMA to connect
Pangu. PolarDB is rather different since there are two modes
in its implementation: one is for its own back-end and the
other is for Pangu. Both modes use RDMA.

We can conclude that Alibaba’s applications running over
RDMA are crucial and complex.

III. LARGE-SCALE PRODUCTION ISSUES

We now address the issues related to large-scale deploy-
ment, along with their feasible solutions.

Complex Programming Abstraction. The native RDMA
library (i.e., libverbs) is more complex than traditional socket
programming. As mentioned in Section II-A, the developer
has to consider various parameters, corner cases, performance
tuning [29] and hidden costs [30] carefully, especially in
complex production environment with different applications.
Meanwhile, many key innovations such as ODP [31] are
only offered in some specific implementations [32]. Take a
simple ping-pong program as an example. Using libverbs the
program requires at least 200 lines of code, while 50 lines
of code is enough for socket programming. In our practice,
since most developers have insufficient experiences in RDMA
programming, appropriate simplifications and classifications of
RDMA library APIs are desired.

Scalability Challenges. In the production environment of
Alibaba, there are usually over hundreds of machines and
thousands of connections per machine. Three challenges can
be concluded when scaling RDMA.

Issue 1: RDMA resource footprint will increase rapidly
as the cluster scale. One of the biggest advantages of
RDMA is zero-copy, but the one-sided mode needs on-
demand memory allocation, i.e., reserves more memory even

before any transmission starts for each connection. Instead,
in TCP/IP, the kernel can manage the buffer automatically
with fewer reservations. For instance, each block server and
chunk server in Pangu runs N and M threads separately,
and each chunk server thread needs to establish connection
with all block server threads. Such full-mesh connectivity
consumes a significant amount of memory (around N % M *
blockserver_number * depth * message_size), and hence
incurs a high memory footprint.
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Fig. 3: Per-machine online monitoring of PolarDB.

Issue 2: Congestion and heavy incast exist commonly in
large-scale RDMA network [33]. A typical scenario in our
production servers is distributed storage such as Pangu or
ESSD and always follows incast traffic pattern [34]. Besides,
similar to the deployment in Facebook [35], the network
workload always switches between saturated and unsaturated
as shown in Figure 3, and it can easily overload the RNIC
with congestion. As another aspect, congestion can also result
in jitter. Despite the fine-tuned DCQCN, because the large-size
messages block the RNIC processing [36], some serious jitter
cases have been observed in larger clusters. In production en-
vironment, serious jitter can incur 70% throughput degradation
(from 3.4 GBps to 1.1 GBps) and 2x~15x higher latency.

Issue 3: Slow connection establishment can delay the re-
covery and increase the time for the cluster return to steady-
state. The connection establishment time for RDMA using
RDMA_CM [37] is about 4 milliseconds compared with al-
most 100 microseconds in TCP. This doesn’t attract enough
attention in the previous steady-state cluster. However, in the
production environment, the condition is more complex, some
applications may be restarted and machines can be added or
removed elastically in large-scale production environment. Ad-
ditionally, the cluster may sometimes be scaled or upgraded.
This situation gets worse as the scale extends and easily
causes the network jitter and long tails. While establishing
connections in a 64 machines cluster, the throughput of ESSD
will be nearly 65% lower than the steady-state.

Lower Robustness. There are mainly two issues in using
RDMA based on its original software/hardware stack.

Issue 1. It is hard for the sender side to be aware of
the receiver side applications’ processing progress via RDMA
one-sided operations. Even though RNIC provides acknowl-
edgment in the hardware layer, the sender side cannot deter-
mine if the packet has already been perceived by the actual
application. The buffer is not freed until the receiver (i.e., the
application) finishes processing the data. In this case, more
and more data is received, yet the sender does not know the
progress and keeps transmitting continuously. A receiver-not-



ready (RNR) error will be raised when there is no buffer
available. This problem becomes more difficult to fix while
using one-sided operations. The RNR error can increase the re-
transmission ratio and hence wastes both network bandwidth
and CPU cycles. In worse cases, it can result in jitter.

Issue 2: Native RDMA library and RNIC cannot ensure
the peer is active all the time. For example, while using
the native RDMA library, if one machine crashes, there is
no notification to the peer side. Consequently, the QPs and
various resources are held until future communication happens
again and then an error is generated. Especially, in long time
running, even when the chunk servers in Pangu has already
been disconnected, some will still occupy connection resources
and memory consumption could be nearly at GB scale. This
kind of resource-leak has been resolved well by TCP’s keep-
alive option [38]. Unfortunately, there is not an alternative
solution in lower-level implementation of RDMA.

Bugs and Performance Interferences. In production environ-
ments, the communication patterns are complex and rapidly-
changing so as to trigger bugs easily. Locating potential bugs
and performance bottlenecks quickly is beneficial to quality
improvement and performance of operations as well as main-
tenance in the long run. We still need some complementary
gadgets in six aspects: 1) The original RDMA stack can not
supply netstat [39] as analysis tool to help find connection
level information; 2) There is no effective pingmesh [40]
tool; 3) Utility is lacking for complex performance assessment
and stress test; 4) There must be some measures to simulate
network exceptions, e.g., message drops, but unfortunately,
Linux netfilter [41] does not work on RDMA data-plane;
5) There should be some mechanisms to help distinguish issues
at the first place quickly; 6) Dynamic setting adjustment is
helpful for tuning different applications.

Conditional Performance Maximization. How to fulfill the
above desires and at the same time maintain raw performance
is the major consideration in our RDMA based design.

These issues motivate that X-RDMA adopts several design
principles to achieve the desirable goals:

I. Abstract high-level data structures and interfaces to simplify
the complex programming model.

II. Provide light-weight and efficient protocol extensions to
improve robustness.

ITI. Add resource management system and internal flow con-
trol to maintain performance in bad cases with large scale
datasets.

IV. Integrate utilities and schemes to fulfill the requirements
for debugging, performance bottleneck detection and tuning.
V. Explore effective thread model, message model and work
flow as well as simplifies functional implementation to play
RDMA’s raw power.

IV. X-RDMA DESIGN
A. Overall Architecture

X-RDMA can be abstracted to three layers and 16 primary
components as shown in Figure 4.
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Fig. 4: Overall Architecture.

In the upper layer, X-RDMA provides three highly ab-
stracted data structures and eight major APIs to simplify
RDMA primitives. The native RDMA verbs library has nearly
30 data structures (ibv_pd/mr/cqg/wc/gp/wr, etc). X-
RDMA, on the other hand, offers three simple but crucial
data structures: context, channel, and msg. As shown
in Table I, X-RDMA focuses on providing a minimal set of
APIs based on combined requirements for better performance
and usability.

TABLE I: Major APIs of X-RDMA.
APIs (xrdma_)  Descriptions

send_msg common routine of sending message to remote
polling polling the context to check events/messages.
get_event_fd get the xrdma_fd to do select/poll/epoll
(de)reg_mem register/deregister RDMA-enabled memory
set_flag dynamic changing configurations

process_event
trace_request

handle event notified by fd
trace information of the request message

In the middle layer, X-RDMA implements useful compo-
nents for reliable protocol extension, resource management,
flow control, and performance analysis. Firstly, this layer
extends the traditional RDMA protocol stack by Seg-Ack and
KeepAlive. FlowCtl is offered as another protocol extension in
the same layer. Secondly, resource management is handled by
MixMsg, MemCache and QP Cache. The first two components
are specific to RDMA-enabled memory, while the last one
is related to QP. Furthermore, the analysis system consists
of six components including Trace, Statistic, Config, Filter,
Mock, and Monitor. Lastly, there are five associative utilities:
XR-ping, XR-perf, XR-stat, XR-server and XR-adm, which are
convenient for debugging and administration. Some basic data
structures, such as timer, task, £d, construct the bottom
layer of X-RDMA.

Overall, these components are classified into four separate
systems and bring convenience to various developers. X-
RDMA’s APIs are designed for large-scale production en-
vironments and sacrifice infrequently used functionalities to
avoid the complex programming abstraction trap.

B. Thread Model

Since the latency using modern RNIC can be as low as
nanoseconds, all operations on data-plane could be completed
in constant time (O(1)) even in the worst cases to match
the lower network latency. Thus, X-RDMA adopts lock-free,
atomic-free and no-syscall strategies to reduce the overheads
in bus locking and context switching between user space and



kernel space [42]. It avoids using any lock and only allows
atomic operations and syscall on non-critical paths.

The thread model design principle of X-RDMA is run-
to-complete generally. High-level resources, such as context,
channel, memCache, QP cache, etc, all operate on a per-
thread level to avoid synchronization between threads. These
resources will be initialized in each context only once.

X-RDMA uses a hybrid polling approach where a thread
uses epoll first and then switches to busy polling when a
message or timer event is triggered, similar to NAPI [43] in
the Linux kernel. X-RDMA registers some events including
keepAlive, statistic, etc, to the per-thread t imer. During the
idle time, the polling mode is configurable according to the
scheme of applications.

C. Message Model

At Alibaba, various applications (e.g., Pangu) are based on
RPC in which the request-response mode is typically used for
the communication between multiple processes. X-RDMA is
implemented in essentially the same manner.

Since the buffer pre-allocation phase will introduces a
significant overhead [30], to better balance performance and
resource utilization, X-RDMA adopts a mixed messaging
strategy including two modes: small message mode for max-
imizing performance and large message mode for reducing
memory footprint. When the payload size is less than a
threshold of S bytes, it should be treated as a small message,
and vice versa. This value is set to 4 KB by default. To some
extent, this mechanism is similar to the eager and rendezvous
protocols of MPI [44].

Small Messages v.s. Large Messages: For small messages,
the sender side directly sends data to the receive side and
hence triggers a receiving WR. Each data transmission only
needs one RDMA operation. However, the receiver side needs
to pre-allocate enough buffers. Thus, the payload size of small
message cannot be large, or it will consume more buffers and
hence incur high memory consumption. With large message,
the sender side will first post an RDMA Send WR to wake
up the receive side. The receiver will prepare the RDMA-
enabled buffers on demand. We call this phase as buffer-
preparation phase. After that, the actual data transmission
relies on RDMA write/read from the sender side. In this mode,
each data transmission needs at least two RDMA operations. In
production environments, small messages are more sensitive
to high latency than large messages which usually have a long
transmission time. To some extent, large messages can tolerate
a little downgrade of latency through prepared buffers.

Read Replace Write: X-RDMA supports built-in RPC. In
most RPC implementations, the receiver sends back response
to the sender. Large size responses are prohibitive to handle.
Since the sender side doesn’t know the response’s payload
size, the sender side should reserve ‘“over-size” buffer for
the receiver to write the response back via RDMA Write.
Even worse, in the RPC scenario, RDMA out-bound operation
(Write) is always slower than in-bound operation (Read) on
the receiver side [15], [45]. To remedy this, X-RDMA allows

the sender to handle the response directly. The receivers should
let the sender know the response’s size and address, and the
sender will passively fetch the response via RDMA Read.

D. Work Flow
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Fig. 5: Per thread workflow.

The workflow for each thread is shown in Figure 5. To
establish the connection (xrdma_ channel), both sides start
out in listening or connecting state at first ((I)). After that, the
developer should request RDMA-enabled memory from the
memory cache, as the described in Section IV-E, or register
RDMA-enabled memory manually ((2)). For an instance of
data transmission with polling mode, the receiver will poll
for the completion (@) of the message sent from the sender
(®). The receiver will send back the response with an ACK
number attached. If the sender is in the debug mode, the
header of the response payload () is teared off to trace
this request. More details will be described in Section VI-A.
During the communication, messages will not block the next
message even if it is unfinished. Unacknowledged messages
are called inflight messages. However, X-RDMA limits the
number of inflight messages as depth which is less than the
CQ depth. Other than polling mode, X-RDMA also provides
event mode for receiving messages. The sender should get
the event fd ((®)) first and then handle the event notifications
(). If a time-out event occurs during communication, some
extended operations such as heartbeat messages (keepAlive)
will be generated immediately. Additionally, X-RDMA can
change configuration dynamically (()) to adjust running state.

E. Resource Management

To improve performance, reduce memory footprint, and
shorten establishment time, we manage per-thread resources
with memory cache and QP cache.

Memory Cache: To adjust the capacity of RDMA-enabled
memory, X-RDMA manages per-context RDMA-enabled
memory as the memory cache which contains several MRs
of identical size. If the capacity is insufficient, it will register



for a new MR. Otherwise, if the resource utilization becomes
lower, it will shrink its capacity by reclaiming idle MRs.
Additionally, previous research with LITE [46] has pointed
out that the performance will downgrade as the number of
MRs increase. LITE adopts 4KB size for each registration
and faces pressure when the number of MRs is larger than
one thousand. We set each MR to 4MB in order to avoid per-
formance downgrading. In our implementation, we can extend
the memory cache’s capacity automatically or manually (for
finer-grained tuning). We will further describe how to improve
memory cache for convenient debugging in Section VI-C.
QP Cache: Since slow connection establishment will result
in jitter (as described in Section III), we manage connec-
tions as a per-thread resource cache. X-RDMA accomplishes
the QP destroying phase directly by setting its status to
IBV_QPS_RESET, and releasing it to the QP cache. X-
RDMA will reuse this QP from the QP cache to accelerate
connection establishment.

V. PROTOCOL EXTENSIONS
A. KeepAlive

In the traditional TCP/IP protocol, the keepAlive mechanism
can check whether the connection is still alive or not through
sending heartbeat messages [47]. From our experience with
RDMA deployment in production environments, we observe
that the connection leak might happen inevitably due to various
conditions such as timeout, network fault, machine crashing,
etc. Distinct from the case in TCP/IP protocol, the node is
prohibitive to know that the peer side is unreachable.

Based on the native reliability (reliable delivery and in-order
arrival) of RC mode, X-RDMA employs RDMA Write to
implement KeepAlive since its kernel bypass feature will not
awake the peer side’s application and consume CPU resources.
In our implementation, a probe request, i.e., RDMA Write,
will be triggered if either side fails to communicate with peer
side more than S ms. The RNIC will automatically respond
to an acknowledgment to declare its aliveness. To reduce any
negative impact on overall performance and avoid any demand
of RDMA-enabled memory, the payload size of this probe
request is zero [48]. If the connection is broken, corresponding
resource (e.g., QP) should be released immediately to avoid
connection leaks.

B. Seq-Ack Window

X-RDMA requires the seq-ack mechanism in two aspects:
1) As we mentioned in Section III, the acknowledgment about
data arrival from RNIC (i.e., CQE) cannot become an evidence
to ensure that receiver side’s application has perceived this
data. 2) With small messages, the sender side needs the
receiver side to reserve buffers for the incoming data. With
massive messages, the receiving buffers may be not enough.
As a result, the RNIC on the receiver side will throw an RNR
exception and then disconnect immediately.

Accordingly, based on messages, not the commonly-used bi-
directional byte stream [49], X-RDMA offers an application-
layer seq-ack window mechanism and hence guarantees RNR-

free. In our implementation, each side has a window to buffer
in-flight requests, and the windows adopt a ring buffer style
whose ring length is the in-flight message depth. Either side
will record its current seq-ack number and send it to the other
via RDMA Write/Send. This seq-ack number is attached to the
immediate data to reduce DMA trips and notifies the peer side
immediately [6], and each transmission will carry the current
ACK number. After receiving N messages successfully but
without any ACK, a standalone ACK message will be triggered
to acknowledge arrival.

Algorithm 1 shows the send and receive operations on

both sides with seq-ack window mechanism. ACK/ACKED and
SEQ/WTA are the left and right edges of the sender/receiver’s
window respectively. On the sender side, the SEQ will be
incremented by one for each send request. The receiver side
should also increment WT' A upon receiving a request. After
that, it decides whether the sender side fetches the data via
RDMA Read or not based on request’s status. Then, the
receiver calls rdma_read_done and determines if the ACK
in this message equals RT A. If true, the receiver will update
RT A until RT A equals WT A or any un-completion message
is missed. When sending back a message to the sender side,
it will update ACKED as RT A, and attach ACK ED to the
next message as the newest AC K number.
Avoid Deadlock: If both sides of the connection try to post
WR to each other simultaneously before ensuring the previous
ACK, they cannot post WR successfully until one side is
aware of the previous ACK, because none of the sides have
available window for acknowledgement and hence trap into
deadlock. Such deadlock is different from the TCP dead-
lock [49] whose root cause is the limited size of the buffers.
To avoid the scenario, we add a NO P message mechanism to
trigger completion proactively. A NOP message is preserved
in the ring buffer. X-RDMA exploits the per-context t imer to
detect deadlocks for all connections in one context to reduce
overhead. If it exists, the sender side will use the NOP
message to notify the receiver side to break the deadlock.

C. Flow Control

As a reactive congestion control method, we observed
that DCQCN [11] fails to perform very effectively in the
large-scale cluster with heavy incast, i.e., massive inbound
connections. We add built-in flow control based for the fol-
lowing reasons: 1) DCQCN is a passive control in incast
scenario, but it may incur harmful effects on the application
before the reaction works; 2) According to our statistics in
large-scale clusters, much more CNP (Congestion Notification
Packets) and PFC pause frames are generated due to the heavy
incast, which will downgrade performance and robustness
of the whole network. X-RDMA adopts fragmentation and
queuing to coordinate with DCQCN and hence avoid network
congestion:

Fragmentation: Large size request will usually block the
RNIC processing since RNIC should ensure the completion of
this request. Thus, congestion is inevitable. X-RDMA exploit
fragmentation to preemptively schedule multiple RDMA WRs



Algorithm 1 Seq-Ack Mechanism.

1: Initialize timer per xrdma_context

Sender

2: procedure SEND_MESSAGE(msg)

3: QP.tx.seq + +

4: procedure RECV_MESSAGE(msg)

5 for i in range(QP.tx.acked to msg.ack) do
6 call_on_acked(messages][i])

7: QP.tx.acked = msg.ack
8
9
10

: procedure TIME_OUT(timer)
if deadlock ocurred then
send_message(NOP_MSG)

Receiver

provides several mechanisms and tools for covering various
types of bugs.

TABLE II: Classification of bugs.

Bug Type

heavy Incast

broken network

jitter

long tail

bugs hard to reproduce
memory leak or crash

Tracking Method

tracing, XR-Stat
keepAlive, XR-Ping
tracing, XR-perf
tracing, XR-perf

filter

isolated memory cache

11: procedure SEND_MESSAGE(msg)
12: QP.rz.wta + +

13: if need_rdma_read(msg) then
14: do_rdma_read(msg)

15: else

16: msg.recved = true;

17: procedure RECV_MESSAGE(msg)
18: QP.rx.acked = QP.rz.rta
19: msg.acked = QP.rx.acked

20: procedure RDMA_READ_DONE(mSsg)

21: msg.recved = true

22: if msg.id == QP.rz.rta then

23: QP.rx.rta + +

24: while QP.rz.rta < QP.rz.wta & msgs|QP.rz.rta].recved
do

25: QP.rx.rta + +

ACK - current received sequence number;

SEQ - current sending sequence number;

ACKED - current acknowledgment number sending to receiver;
RT A - current acknowledgment number which is ready to ack;
WTA - current acknowledgment number which is wait to ack;

to reduce incast. For a large size RDMA WR, its payload will
be broken into multiple fixed moderate size fragments with its
original destination in order. However, if the fragment size is
small, too many fragments will saturate the RNIC. Moderate
size fragments can benefit the RNIC and at the same time
do not block other requests. In practice, X-RDMA sets the
fregment size as 64KB.
Queuing: To remedy the congestion, X-RDMA limits the
number of outstanding RDMA WRs to N and hence employs
a queue to buffer extra requests. Before posting a new RDMA
WR, X-RDMA determines whether the number of current
outstanding RDMA WRs n exceeds the threshold N or not.
The RDMA WR can only post into the SQ if n is less than N.
Otherwise, it will be pushed to the queue first and then posted
to the SQ under satisfied conditions (the SQ is not full).
These two flow control algorithms are constructed based on
native RDMA library without specific hardware or software
constraints.

VI. ANALYSIS FRAMEWORK

In large-scale production environment, bugs such as jitter,
time-out, performance downgrade, and glitch may appear at
different stages. X-RDMA is responsible for tracing these
issues, regardless of whether they are from either the upper
layer applications or the lower hardware layer. How to locate
bug as soon as possible is a foremost demand in production
environments. As the Figure 6 and Table II shows, X-RDMA
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Fig. 6: Analysis framework during running time.
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A. Tracing

To satisfy the requirements of tracing issues and latency
map, X-RDMA implements an internal reg-res mode distinct
from the native bare-data mode. In the reg-res mode, X-
RDMA reconstructs the original payload, and each message
contains a header inside the raw payload. We use this header to
attach necessary information for tracing and trouble shooting.
X-RDMA sets bare-data as its default mode to push for
extreme performance. If it requires tracing, X-RDMA will
switch to reg-rsp mode where the tracing data can be attached
to the header as show in Figure 6.

Previous work has only focused on measuring RTT and ig-
nored the fine-grained decomposition of each RDMA request.
Actually, some of these phases could be the actual causes of
poor performance. X-RDMA implements the following three
case-by-case methods to detect the root cause of long latency:
I. Generally, reasons causing long request latency include
packet loss, long pausing time, and over-saturated requests in
the network L1. X-RDMA implements a discovery mechanism
to measure overhead under L1. Both sides synchronize their
clocks and calculate the time offset as T, 7s. Then the sender
side will attach a time-stamp to the header with local time
T1, and the receiver will also keep the received time-stamp as
T5. The real request time can be estimated as To — T — T4, y.
A prerequisite for this method is that the sender and receiver
should have well-synchronized clocks to avoid bias. For this,
X-RDMA provides a clock synchronization service [50].

II. Working threads of the application may abort time-
consuming operations, and there is no timely polling. Conse-
quently, it will result in slow requests and long tail. X-RDMA
counts the time interval between two polling operations. Thus,
it can detect performance degrades caused by polling.

III. X-RDMA inserts time measurement instructions into
different critical code segments. If the execution time of a



specific code segment exceeds a threshold, X-RDMA will
record its location in a log. These logs can be collected by
the monitor as shown in Figure 6. Developers can then use
these logs to detect performance bottlenecks.

B. Monitoring

In the X-RDMA monitoring system, we integrate three new
utilities necessary in production environments.
XR-Stat: Based on the channel abstraction, X-RDMA can
provide per connection statistics similar to those of the
netstat tool. These statistics can also include other re-
sources such as memory cache. While coordinating with
the monitoring system, it provides the raw data for both
troubleshooting and performance analysis. Despite this, the
RDMA network is sensitive to packet loss and high latency.
Meanwhile the whole system will also monitor PFC status,
queue drop counter and buffer utilization as crucial indexes.
XR-Ping: Since the original ping cannot emulate the real
RDMA network and the RDMA-based rping is too simple
and buggy, X-RDMA designs an RDMA-friendly ping tool
able to show a network connection matrix, i.e., the full-mesh
connection status, through exploiting the centralized monitor.
As shown in Figure 6, XR-ping will ping all machines in the
ToR layer, and then aggregate the results to the connection
matrix in the monitor.
XR-Perf: Besides benchmark and stress test, we need a more
flexible method to customize flow models, e.g., elephant and
mice flows [51]. XR-Perf can fulfill these requirements. By
integrating it into the monitoring system, we can collect
information, analyze complicated scenarios and understand
performance for RDMA and X-RDMA from a higher per-
spective.

C. Extra Schemes

Memory Cache Isolation: Raw RDMA libraries lack de-
tection mechanism to that warn developers of memory ac-
cess bugs, especially those caused by out-of-bound access
to RDMA-enabled memory. As a result, it is inconvenient
for the developer to find the root causes. In X-RDMA'’s
implementation, the memory cache will be assigned to a
higher address space near the stack space via mmap. Besides,
memory cache addresses are marked to avoid conflict with
other threads’ addresses.

Emulate Fault: To emulate fault cases, X-RDMA implements
a simple error injection module named Filter, for fault cases
such as dropped messages, slow messages, etc. The developer
can enable or disable filter online via the tuning system.
Switch between RDMA and TCP: To handle some rare
RDMA network anomaly scenarios such as heavy conges-
tion, high-degree incast or protocol stack collapse, X-RDMA
provides a Mock mechanism to temporarily switch to TCP
network as shown in Figure 6.

D. Tuning

Different applications may have distinctive models and re-
quirements. As a middleware, X-RDMA supplies a mechanism

to export useful X-RDMA-internal and lower-level RDMA
tokens to those applications. As shown in Figure 6, while
running an X-RDMA application, there is a specific idle
thread that administers local configurations. An admin tool
XR-adm is responsible for distributing the configurations to
these control threads from the running X-RDMA applications.
Table III gives several crucial configuration parameters in the
production environment. X-RDMA subdivides them into two
types: “online” which can change values dynamically, and
“offline”, which remain the same at runtime.

TABLE III: Configurations.

Name Description

Online

keepalive_intv_ms
slow_threshold
polling_warn_cycle
trace_sample_mask

keepAlive probe interval

decide whether to record log about slow operation
threshold (between 2 polling) to detect slow poll
indicate whether to trace a message

Offline

use_srq use SRQ or not

cq/srq_size maximum SRQ wqes

fork_safe sulgport fork or not

ibgp_alloc_type QP buffer type (Huge-Page/Anony-Page/Malloc)
small_msg_size less than this threshold, use RDMA Send

VII. EVALUATION AND EXPERIENCE

X-RDMA has been fully implemented and used in Alibaba

for nearly two years. Many business systems benefit from X-
RDMA by enhancing the robustness of data transfer and sim-
plifying debugging procedures. With X-RDMA, the various
services at Alibaba can survive heavy load situations, such as
the moment when the peak throughput reaches 35.78 million
requests per second during the shopping spree. The large-
scale deployment of X-RDMA also exhibits strong robustness
without any bugs within one year.
Deployment at Alibaba: At Alibaba, over 4000 servers are
deployed with X-RDMA using RoCEv2 protocol. The largest
RDMA based cluster contains 4 sub-clusters, each of them
having 256 nodes. Nodes are typically equipped with a dual-
port 25Gbps (50Gbps in total) Mellanox ConnectX4-Lx RNIC.
Almost all business scenarios are deployed with X-RDMA as
the basic component. These RDMA based productions include
X-DB, ESSD, Pangu, and PolarDB [25], which require robust-
ness, maintainability, and high performance. Applications built
with X-RDMA form the infrastructure used for web shopping
services at Alibaba. These services have been running under
real-world workloads during shopping transactions.

A. Performance Benchmarks

Comparison to other middleware. We use X-RDMA to
implement the ping-pong tests under reg-res mode and bare-
data mode respectively, and compare bare-data mode with
ibv_rc_pingpong which is part of the native RDMA
library. ibv_rc_pingpong can be seen as an ideal base-
line compared to other test tools, since it has no extra
overhead other than the primitive RDMA operations. Be-
cause X-RDMA adopts mixed messaging strategy, as shown
in Figure 7, XR-perf achieves similar performance as



ibv_rc_pingpong with at most 10% degradation on av-
erage in rare cases. We also compare X-RDMA with state-
of-the-art RDMA libraries: UCX [52] and Libfabric [53]. In
some cases, X-RDMA performs with 5%/10% lower latency
(5.60us) than the better one ucx—am-rc of UCX (5.87us)
and Libfabric (6.20us).
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Fig. 7: The comparison between X-RDMA (bare-data/req-res),
xio, ucx, and ibv_rc_pingpong under different data sizes.

With mixed messages, the larger ones need an extra RDMA
operation for buffer-preparation. As shown in Figure 7, the
latency of large messages is about 40% higher than small
ones (with size under 128 Bytes). Beyond 128 Bytes, the
difference is acceptable (at most 1.4us which is less than
10% latency increment). In fact, the large size can benefit
from buffer-preparation with lower memory footprint, which
is only 1%~10% of small size depending on CQ depth.

To evaluate the overhead brought in by tracing, we make
a comparison of X-RDMA under bare-data mode and reg-res
mode. The results show the ping-pong latency only increases
by 2~4% for around 200ns extra time.

B. Programming Simplification

Compared to native RDMA: X-RDMA provides almost all
required network functionalities for large-scale production.
For instance, without X-RDMA, to implement data plane and
protocols in Pangu, 2000 LOC native RDMA code is needed.
In comparison, only about 40 LOC of X-RDMA APIs is
required without any other network code.

Engineering Period: According to the statistics in a typical
project named ERPC which is a protobuf RPC framework
with RDMA support at Alibaba, compared with the original
RDMA stack, X-RDMA has helped save at least 70% of man-
month from development to maintenance for a team.

C. Robustness Enhancement

Establishment Time: Once QP cache is applied, the connec-
tion establishment time will decrease from 3946us to 2451 s
to save 38% of time. This comes from the reduction of QP
creation time by the reuse of reclaimed QP. Besides, the con-
nection establishment phase with 4096 connections only costs
around 3s whereas 10s is required by using rdma_cm [37].
Figure 8 presents ESSD can switch to steady-state rapidly
within less than 2s and reach 6 KOPS (around 24 Gbps).
RNR Free: Figure 9 shows that X-RDMA can ensure appli-
cations are RNR free with seq-ack mechanism, compared to
the primitive RNR error number which is 0.91 on average.
Flow Control: We emulate the incast scenario for one node
with 6144 connections and all out-bound RDMA Read/Write
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Fig. 10: The comparison among 64KB, 128KB and 128KB
payload sizes with flow control (fc).

operations. Figure 10 shows the effects of flow control. CN P
(Congestion Notification Packets) and T'X Pause are cruial
indexes in DCQCN and PFC respectively. A higher value
means the network suffers heavier congestion. After applying
flow control, the bandwidth can be improved by around 24%.
Besides, the average C'N P number is reduced to 1~2% and
the T'X pause is directly minimized to nearly zero.

D. Tracking Case Study

To show the effects of X-RDMA’s analysis framework, we
select two cases for discussion.
Application Issue: we found that Pangu has occasional I/O
jitter. With the self-adaptive logging in X-RDMA, the monitor
system can gather these logs along those critical paths auto-
matically. We have noticed that the polling phase of several
threads sometimes has a higher overhead simultaneously.
According to its location, we find the allocator lock in
applications on the top of Pangu is the primary cause of these
performance issues.
Network Issue: As some slow I/O situations only existed in
specific servers, we tuned X-RDMA into rep-res on these
servers. According to the monitor system, we found that the
time spent was mostly on the network. After checking network
status by some messages with recorded IP addresses and time-
stamps, we realized that out-of-sequence event was happening.

We have received several anecdotal stories about using
analysis framework to successfully detect performance issues.
Totally, before large-scale deployment of X-RDMA based
applications at Alibaba, we has found out about 20 potential
issues via analysis framework of X-RDMA. After production
deployment, it again helped locate more than 10 issues in
different layers of production application systems.

E. Production Evaluation

We have deployed about 1200 back-end servers with X-
RDMA and 20K virtual machines (i.e., front-end servers) in



ESSD. In X-DB, another 1200 back-end servers and 10K
dockers with mysql are running X-RDMA. Over 5000 connec-
tions exist on each server on average. As shown in Figure 11a
and 11b, the online upgrading will increase the QP number
rapidly but will not harm the performance or result in jitter.
Figure 1lc demonstrates that the memory caches operate
smoothly with the changing bandwidth.
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Figure 12 shows the online monitoring about latency and
throughput of two X-RDMA applications: ESSD and X-DB.
Jitter is mitigated effectively under pressure. In the dotted
box at Figure 12a, the throughput of ESSD is increased by
nearly 300%. However, thanks to anti-jitter strategies (protocol
extension and resource management), the latency has no
significant increment during this period. Similar to ESSD, X-
DB also has better performance in jitter mitigation and latency
stabilization as shown in Figure 12b.
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Fig. 12: The online application anti-jitter (11.NOV).

Totally, during the shopping spree in 2018, ESSD handled
massive requests at a peak of 35.78 MOPS. The peak write
bandwidth is at thousands of Gigabytes per second scale in
total with a 267.07us end-to-end latency on average. As we
expected, X-RDMA can handle it without any exception.

F. Experiences

Influence of RNIC cache is limited: Poor performance of
RDMA for large-scale applications has been pointed out in
some recent works [36]. This is due to the limited capacity
of SRAM in RNIC [46]. According to our evaluation upon
ConnectX-4 RNIC, cache influence on performance is almost
below 10% even when the number of QP grows up to 60K. It
should not be a major issue about scalability.

Pay attention to SRQ: With shared receive queue (SRQ),
multiple QP’s can bind its RQ to the same one [54]. SRQ
can effectively reduce memory usage. However, it violates our
RNR-free design principle which means SRQ can potentially
cause network jitter. In X-RDMA, SRQ is supported although
disabled by default. We suggest not to enable SRQ when the
number of QPs for each node is under 10K.

Avoid to use continuous physical memory: According to
our statistics, memory fragmentation on massive servers is
inevitable. Using continuous physical memory can be cache-
friendly [5], but this will cause out-of-memory issue and
trigger memory recycling in kernel to slow down the whole
system in some cases. We evaluate three modes (i.e., non-
continuous, continuous and hugepage) and the results show
that the non-continuous mode has comparable performance
and less fragmentations.

VIII. RELATED WORKS

Rsocket [55], accelio [56] and UCX [52] are currently the
three most commonly-used RDMA middleware. Rsocket is a
simple wrapper of RDMA APIs. Accelio is an early implemen-
tation with complex abstractions to support both RDMA and
TCP. UCX is the most recent, state-of-the-art implementation,
but it is hard to maintain due to its diverse features. X-RDMA
keeps the middleware compact and small. LITE [46] is an
academic representative work, implemented within the Linux
kernel to provide easy-to-use interfaces and share resources
safely. As an industrial-grade project, Libfabric [53] provides
abundant libraries aligned with application requirements and
has good impedance match with multiple fabric hardware
(InfiniBand, iWarp, RoCE, raw Ethernet, UDP offload, Omni-
Path, GNI, etc). In contrast, at Alibaba, we tend to simplify
and move data-plane from kernel to user-space completely to
increase clarity and eliminate complex interference within the
kernel as much as possible.

Beyond general purpose middlewares, MVAPICH2 [57] and
[58] provides several MPI interfaces for HPC environments.
Similarity, OpenSHMEM [59] provides one-sided RDMA and
parallel-processing interfaces for distributed memory access.
Remote Regions [32] argues that file system interfaces will
be better while using RDMA. Several research works [3],
[29] focus on how to improve the usage of RDMA and
increase raw performance. Lu et al [60] exploit multiple RNIC
ports and design a mechanism to avoid out-of-order packets
and reach a nearly linear improvement of bandwidth with
an increasing number of ports. Current Big Data softwares
can further be optimized with the features of RDMA such as
Spark [61] and Hyper-V [62]. From another perspective, we
share X-RDMA experiences about commercial requirements
such as robustness, efficient resource management, convenient
debugging tools, etc in large-scale production systems, and
how to resolve them with less impact on the raw performance.

Before the wide deployment of RDMA, several technical
reports such as Portals [63], [64] propose a set of one-sided
memory semantics APIs to support zero copy and kernel
bypass within the protocol layer.



I1X. DISCUSSION

Towards X-RDMA, we would like to discuss the future
development road-map of RDMA. Currently, data centers still
have to face some challenges when using RDMA even after
10 years of deployment. Our experiences may help predict the
possible trends.

Connection Establishment: X-RDMA uses QP cache to
reduce the connection establishment time. However, we realize
there is still huge room for improvement for hardware vendors.
The connection overhead of modifying QP is mostly due
to the synchronization of hardware resources. We expect to
see improvement of RDMA hardware in the future. This
improvement will help to eliminate I/O jitter in millisecond
level and shrink recovery time dramatically.

Massive Connections in RC: We are evaluating DCT [65]
from different aspects, and the recent test result shows DCT
can benefit massive connections to some extent but DCT is
not mature and stable enough in our tests.

Hardware-based Filter: X-RDMA offers a software-layer fil-
ter to test the network’s robustness in production environments.
However, direct RNIC support is more desirable.
Transparent to Software Developers: Native RDMA lacks
enough support for performance analysis. We hope more
hardware logic and counters in RNIC could be integrated into
a unique framework like the Linux perf-tool [66].

Eradicate PFC: In some cases, PFC storm [10] happens with
a higher possibility due to the blocking in the switch’s MMU.
PFC storm can easily incur network congestion, deadlock,
performance downgrade and even unavailability [67] of the
whole clusters. We think the trend to enhance flow control is
to discard PFC [68] and focus on the lossy network [36].

X. CONCLUSION

In this paper, we have presented the issues and experiences
about large-scale deployment of RDMA at Alibaba. Accord-
ingly, we implement a middle-ware, X-RDMA, and fulfill the
desires from practical applications in the modern data center.

X-RDMA has been successfully used in various applications
at Alibaba for nearly two years. With X-RDMA, Alibaba’s
key businesses have been running in the production environ-
ments smoothly. X-RDMA helps achieve effective trade-offs
between availability and performance, and also it is necessary
complement to the native RDMA stack. Through X-RDMA,
we have demonstrated to developers which features are the
most desired ones in the production environments.
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